Evaluate
\frac{7}{2}=3.5
Factor
\frac{7}{2} = 3\frac{1}{2} = 3.5
Share
Copied to clipboard
\begin{array}{l}\phantom{48)}\phantom{1}\\48\overline{)168}\\\end{array}
Use the 1^{st} digit 1 from dividend 168
\begin{array}{l}\phantom{48)}0\phantom{2}\\48\overline{)168}\\\end{array}
Since 1 is less than 48, use the next digit 6 from dividend 168 and add 0 to the quotient
\begin{array}{l}\phantom{48)}0\phantom{3}\\48\overline{)168}\\\end{array}
Use the 2^{nd} digit 6 from dividend 168
\begin{array}{l}\phantom{48)}00\phantom{4}\\48\overline{)168}\\\end{array}
Since 16 is less than 48, use the next digit 8 from dividend 168 and add 0 to the quotient
\begin{array}{l}\phantom{48)}00\phantom{5}\\48\overline{)168}\\\end{array}
Use the 3^{rd} digit 8 from dividend 168
\begin{array}{l}\phantom{48)}003\phantom{6}\\48\overline{)168}\\\phantom{48)}\underline{\phantom{}144\phantom{}}\\\phantom{48)9}24\\\end{array}
Find closest multiple of 48 to 168. We see that 3 \times 48 = 144 is the nearest. Now subtract 144 from 168 to get reminder 24. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }24
Since 24 is less than 48, stop the division. The reminder is 24. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}