Evaluate
\frac{56}{5}=11.2
Factor
\frac{2 ^ {3} \cdot 7}{5} = 11\frac{1}{5} = 11.2
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)168}\\\end{array}
Use the 1^{st} digit 1 from dividend 168
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)168}\\\end{array}
Since 1 is less than 15, use the next digit 6 from dividend 168 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)168}\\\end{array}
Use the 2^{nd} digit 6 from dividend 168
\begin{array}{l}\phantom{15)}01\phantom{4}\\15\overline{)168}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)9}1\\\end{array}
Find closest multiple of 15 to 16. We see that 1 \times 15 = 15 is the nearest. Now subtract 15 from 16 to get reminder 1. Add 1 to quotient.
\begin{array}{l}\phantom{15)}01\phantom{5}\\15\overline{)168}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)9}18\\\end{array}
Use the 3^{rd} digit 8 from dividend 168
\begin{array}{l}\phantom{15)}011\phantom{6}\\15\overline{)168}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)9}18\\\phantom{15)}\underline{\phantom{9}15\phantom{}}\\\phantom{15)99}3\\\end{array}
Find closest multiple of 15 to 18. We see that 1 \times 15 = 15 is the nearest. Now subtract 15 from 18 to get reminder 3. Add 1 to quotient.
\text{Quotient: }11 \text{Reminder: }3
Since 3 is less than 15, stop the division. The reminder is 3. The topmost line 011 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}