Evaluate
12
Factor
2^{2}\times 3
Share
Copied to clipboard
\begin{array}{l}\phantom{14)}\phantom{1}\\14\overline{)168}\\\end{array}
Use the 1^{st} digit 1 from dividend 168
\begin{array}{l}\phantom{14)}0\phantom{2}\\14\overline{)168}\\\end{array}
Since 1 is less than 14, use the next digit 6 from dividend 168 and add 0 to the quotient
\begin{array}{l}\phantom{14)}0\phantom{3}\\14\overline{)168}\\\end{array}
Use the 2^{nd} digit 6 from dividend 168
\begin{array}{l}\phantom{14)}01\phantom{4}\\14\overline{)168}\\\phantom{14)}\underline{\phantom{}14\phantom{9}}\\\phantom{14)9}2\\\end{array}
Find closest multiple of 14 to 16. We see that 1 \times 14 = 14 is the nearest. Now subtract 14 from 16 to get reminder 2. Add 1 to quotient.
\begin{array}{l}\phantom{14)}01\phantom{5}\\14\overline{)168}\\\phantom{14)}\underline{\phantom{}14\phantom{9}}\\\phantom{14)9}28\\\end{array}
Use the 3^{rd} digit 8 from dividend 168
\begin{array}{l}\phantom{14)}012\phantom{6}\\14\overline{)168}\\\phantom{14)}\underline{\phantom{}14\phantom{9}}\\\phantom{14)9}28\\\phantom{14)}\underline{\phantom{9}28\phantom{}}\\\phantom{14)999}0\\\end{array}
Find closest multiple of 14 to 28. We see that 2 \times 14 = 28 is the nearest. Now subtract 28 from 28 to get reminder 0. Add 2 to quotient.
\text{Quotient: }12 \text{Reminder: }0
Since 0 is less than 14, stop the division. The reminder is 0. The topmost line 012 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}