Evaluate
\frac{82\sqrt{115}}{23}\approx 38.232697138
Share
Copied to clipboard
164\times \frac{\sqrt{5}}{\sqrt{92}}
Rewrite the square root of the division \sqrt{\frac{5}{92}} as the division of square roots \frac{\sqrt{5}}{\sqrt{92}}.
164\times \frac{\sqrt{5}}{2\sqrt{23}}
Factor 92=2^{2}\times 23. Rewrite the square root of the product \sqrt{2^{2}\times 23} as the product of square roots \sqrt{2^{2}}\sqrt{23}. Take the square root of 2^{2}.
164\times \frac{\sqrt{5}\sqrt{23}}{2\left(\sqrt{23}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{5}}{2\sqrt{23}} by multiplying numerator and denominator by \sqrt{23}.
164\times \frac{\sqrt{5}\sqrt{23}}{2\times 23}
The square of \sqrt{23} is 23.
164\times \frac{\sqrt{115}}{2\times 23}
To multiply \sqrt{5} and \sqrt{23}, multiply the numbers under the square root.
164\times \frac{\sqrt{115}}{46}
Multiply 2 and 23 to get 46.
\frac{164\sqrt{115}}{46}
Express 164\times \frac{\sqrt{115}}{46} as a single fraction.
\frac{82}{23}\sqrt{115}
Divide 164\sqrt{115} by 46 to get \frac{82}{23}\sqrt{115}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}