Evaluate
\frac{164}{149}\approx 1.100671141
Factor
\frac{2 ^ {2} \cdot 41}{149} = 1\frac{15}{149} = 1.1006711409395973
Share
Copied to clipboard
\begin{array}{l}\phantom{149)}\phantom{1}\\149\overline{)164}\\\end{array}
Use the 1^{st} digit 1 from dividend 164
\begin{array}{l}\phantom{149)}0\phantom{2}\\149\overline{)164}\\\end{array}
Since 1 is less than 149, use the next digit 6 from dividend 164 and add 0 to the quotient
\begin{array}{l}\phantom{149)}0\phantom{3}\\149\overline{)164}\\\end{array}
Use the 2^{nd} digit 6 from dividend 164
\begin{array}{l}\phantom{149)}00\phantom{4}\\149\overline{)164}\\\end{array}
Since 16 is less than 149, use the next digit 4 from dividend 164 and add 0 to the quotient
\begin{array}{l}\phantom{149)}00\phantom{5}\\149\overline{)164}\\\end{array}
Use the 3^{rd} digit 4 from dividend 164
\begin{array}{l}\phantom{149)}001\phantom{6}\\149\overline{)164}\\\phantom{149)}\underline{\phantom{}149\phantom{}}\\\phantom{149)9}15\\\end{array}
Find closest multiple of 149 to 164. We see that 1 \times 149 = 149 is the nearest. Now subtract 149 from 164 to get reminder 15. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }15
Since 15 is less than 149, stop the division. The reminder is 15. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}