Evaluate
\frac{164}{13}\approx 12.615384615
Factor
\frac{2 ^ {2} \cdot 41}{13} = 12\frac{8}{13} = 12.615384615384615
Share
Copied to clipboard
\begin{array}{l}\phantom{13)}\phantom{1}\\13\overline{)164}\\\end{array}
Use the 1^{st} digit 1 from dividend 164
\begin{array}{l}\phantom{13)}0\phantom{2}\\13\overline{)164}\\\end{array}
Since 1 is less than 13, use the next digit 6 from dividend 164 and add 0 to the quotient
\begin{array}{l}\phantom{13)}0\phantom{3}\\13\overline{)164}\\\end{array}
Use the 2^{nd} digit 6 from dividend 164
\begin{array}{l}\phantom{13)}01\phantom{4}\\13\overline{)164}\\\phantom{13)}\underline{\phantom{}13\phantom{9}}\\\phantom{13)9}3\\\end{array}
Find closest multiple of 13 to 16. We see that 1 \times 13 = 13 is the nearest. Now subtract 13 from 16 to get reminder 3. Add 1 to quotient.
\begin{array}{l}\phantom{13)}01\phantom{5}\\13\overline{)164}\\\phantom{13)}\underline{\phantom{}13\phantom{9}}\\\phantom{13)9}34\\\end{array}
Use the 3^{rd} digit 4 from dividend 164
\begin{array}{l}\phantom{13)}012\phantom{6}\\13\overline{)164}\\\phantom{13)}\underline{\phantom{}13\phantom{9}}\\\phantom{13)9}34\\\phantom{13)}\underline{\phantom{9}26\phantom{}}\\\phantom{13)99}8\\\end{array}
Find closest multiple of 13 to 34. We see that 2 \times 13 = 26 is the nearest. Now subtract 26 from 34 to get reminder 8. Add 2 to quotient.
\text{Quotient: }12 \text{Reminder: }8
Since 8 is less than 13, stop the division. The reminder is 8. The topmost line 012 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}