Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\begin{array}{c}\phantom{\times9999}16384\\\underline{\times\phantom{9999}16384}\\\end{array}
First line up the numbers vertically and match the places from the right like this.
\begin{array}{c}\phantom{\times9999}16384\\\underline{\times\phantom{9999}16384}\\\phantom{\times9999}65536\\\end{array}
Now multiply the first number with the 1^{st} digit in 2^{nd} number to get intermediate results. That is Multiply 16384 with 4. Write the result 65536 at the end leaving 0 spaces to the right like this.
\begin{array}{c}\phantom{\times9999}16384\\\underline{\times\phantom{9999}16384}\\\phantom{\times9999}65536\\\phantom{\times99}131072\phantom{9}\\\end{array}
Now multiply the first number with the 2^{nd} digit in 2^{nd} number to get intermediate results. That is Multiply 16384 with 8. Write the result 131072 at the end leaving 1 spaces to the right like this.
\begin{array}{c}\phantom{\times9999}16384\\\underline{\times\phantom{9999}16384}\\\phantom{\times9999}65536\\\phantom{\times99}131072\phantom{9}\\\phantom{\times99}49152\phantom{99}\\\end{array}
Now multiply the first number with the 3^{rd} digit in 2^{nd} number to get intermediate results. That is Multiply 16384 with 3. Write the result 49152 at the end leaving 2 spaces to the right like this.
\begin{array}{c}\phantom{\times9999}16384\\\underline{\times\phantom{9999}16384}\\\phantom{\times9999}65536\\\phantom{\times99}131072\phantom{9}\\\phantom{\times99}49152\phantom{99}\\\phantom{\times9}98304\phantom{999}\\\end{array}
Now multiply the first number with the 4^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 16384 with 6. Write the result 98304 at the end leaving 3 spaces to the right like this.
\begin{array}{c}\phantom{\times9999}16384\\\underline{\times\phantom{9999}16384}\\\phantom{\times9999}65536\\\phantom{\times99}131072\phantom{9}\\\phantom{\times99}49152\phantom{99}\\\phantom{\times9}98304\phantom{999}\\\underline{\phantom{\times}16384\phantom{9999}}\\\end{array}
Now multiply the first number with the 5^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 16384 with 1. Write the result 16384 at the end leaving 4 spaces to the right like this.
\begin{array}{c}\phantom{\times9999}16384\\\underline{\times\phantom{9999}16384}\\\phantom{\times9999}65536\\\phantom{\times99}131072\phantom{9}\\\phantom{\times99}49152\phantom{99}\\\phantom{\times9}98304\phantom{999}\\\underline{\phantom{\times}16384\phantom{9999}}\\\phantom{\times}268435456\end{array}
Now add the intermediate results to get final answer.