Evaluate
\frac{81}{37}\approx 2.189189189
Factor
\frac{3 ^ {4}}{37} = 2\frac{7}{37} = 2.189189189189189
Share
Copied to clipboard
\begin{array}{l}\phantom{74)}\phantom{1}\\74\overline{)162}\\\end{array}
Use the 1^{st} digit 1 from dividend 162
\begin{array}{l}\phantom{74)}0\phantom{2}\\74\overline{)162}\\\end{array}
Since 1 is less than 74, use the next digit 6 from dividend 162 and add 0 to the quotient
\begin{array}{l}\phantom{74)}0\phantom{3}\\74\overline{)162}\\\end{array}
Use the 2^{nd} digit 6 from dividend 162
\begin{array}{l}\phantom{74)}00\phantom{4}\\74\overline{)162}\\\end{array}
Since 16 is less than 74, use the next digit 2 from dividend 162 and add 0 to the quotient
\begin{array}{l}\phantom{74)}00\phantom{5}\\74\overline{)162}\\\end{array}
Use the 3^{rd} digit 2 from dividend 162
\begin{array}{l}\phantom{74)}002\phantom{6}\\74\overline{)162}\\\phantom{74)}\underline{\phantom{}148\phantom{}}\\\phantom{74)9}14\\\end{array}
Find closest multiple of 74 to 162. We see that 2 \times 74 = 148 is the nearest. Now subtract 148 from 162 to get reminder 14. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }14
Since 14 is less than 74, stop the division. The reminder is 14. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}