Evaluate
\frac{162}{113}\approx 1.433628319
Factor
\frac{2 \cdot 3 ^ {4}}{113} = 1\frac{49}{113} = 1.4336283185840708
Share
Copied to clipboard
\begin{array}{l}\phantom{113)}\phantom{1}\\113\overline{)162}\\\end{array}
Use the 1^{st} digit 1 from dividend 162
\begin{array}{l}\phantom{113)}0\phantom{2}\\113\overline{)162}\\\end{array}
Since 1 is less than 113, use the next digit 6 from dividend 162 and add 0 to the quotient
\begin{array}{l}\phantom{113)}0\phantom{3}\\113\overline{)162}\\\end{array}
Use the 2^{nd} digit 6 from dividend 162
\begin{array}{l}\phantom{113)}00\phantom{4}\\113\overline{)162}\\\end{array}
Since 16 is less than 113, use the next digit 2 from dividend 162 and add 0 to the quotient
\begin{array}{l}\phantom{113)}00\phantom{5}\\113\overline{)162}\\\end{array}
Use the 3^{rd} digit 2 from dividend 162
\begin{array}{l}\phantom{113)}001\phantom{6}\\113\overline{)162}\\\phantom{113)}\underline{\phantom{}113\phantom{}}\\\phantom{113)9}49\\\end{array}
Find closest multiple of 113 to 162. We see that 1 \times 113 = 113 is the nearest. Now subtract 113 from 162 to get reminder 49. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }49
Since 49 is less than 113, stop the division. The reminder is 49. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}