Evaluate
\frac{16185}{12563}\approx 1.288306933
Factor
\frac{3 \cdot 5 \cdot 13 \cdot 83}{17 \cdot 739} = 1\frac{3622}{12563} = 1.2883069330573909
Share
Copied to clipboard
\begin{array}{l}\phantom{12563)}\phantom{1}\\12563\overline{)16185}\\\end{array}
Use the 1^{st} digit 1 from dividend 16185
\begin{array}{l}\phantom{12563)}0\phantom{2}\\12563\overline{)16185}\\\end{array}
Since 1 is less than 12563, use the next digit 6 from dividend 16185 and add 0 to the quotient
\begin{array}{l}\phantom{12563)}0\phantom{3}\\12563\overline{)16185}\\\end{array}
Use the 2^{nd} digit 6 from dividend 16185
\begin{array}{l}\phantom{12563)}00\phantom{4}\\12563\overline{)16185}\\\end{array}
Since 16 is less than 12563, use the next digit 1 from dividend 16185 and add 0 to the quotient
\begin{array}{l}\phantom{12563)}00\phantom{5}\\12563\overline{)16185}\\\end{array}
Use the 3^{rd} digit 1 from dividend 16185
\begin{array}{l}\phantom{12563)}000\phantom{6}\\12563\overline{)16185}\\\end{array}
Since 161 is less than 12563, use the next digit 8 from dividend 16185 and add 0 to the quotient
\begin{array}{l}\phantom{12563)}000\phantom{7}\\12563\overline{)16185}\\\end{array}
Use the 4^{th} digit 8 from dividend 16185
\begin{array}{l}\phantom{12563)}0000\phantom{8}\\12563\overline{)16185}\\\end{array}
Since 1618 is less than 12563, use the next digit 5 from dividend 16185 and add 0 to the quotient
\begin{array}{l}\phantom{12563)}0000\phantom{9}\\12563\overline{)16185}\\\end{array}
Use the 5^{th} digit 5 from dividend 16185
\begin{array}{l}\phantom{12563)}00001\phantom{10}\\12563\overline{)16185}\\\phantom{12563)}\underline{\phantom{}12563\phantom{}}\\\phantom{12563)9}3622\\\end{array}
Find closest multiple of 12563 to 16185. We see that 1 \times 12563 = 12563 is the nearest. Now subtract 12563 from 16185 to get reminder 3622. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }3622
Since 3622 is less than 12563, stop the division. The reminder is 3622. The topmost line 00001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}