Solve for x
x=5
x=150
Graph
Quiz
Quadratic Equation
5 problems similar to:
160x+(150-2x) \times x=150 \times 80 \times \frac{ 1 }{ 8 }
Share
Copied to clipboard
160x+150x-2x^{2}=150\times 80\times \frac{1}{8}
Use the distributive property to multiply 150-2x by x.
310x-2x^{2}=150\times 80\times \frac{1}{8}
Combine 160x and 150x to get 310x.
310x-2x^{2}=12000\times \frac{1}{8}
Multiply 150 and 80 to get 12000.
310x-2x^{2}=\frac{12000}{8}
Multiply 12000 and \frac{1}{8} to get \frac{12000}{8}.
310x-2x^{2}=1500
Divide 12000 by 8 to get 1500.
310x-2x^{2}-1500=0
Subtract 1500 from both sides.
-2x^{2}+310x-1500=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-310±\sqrt{310^{2}-4\left(-2\right)\left(-1500\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 310 for b, and -1500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-310±\sqrt{96100-4\left(-2\right)\left(-1500\right)}}{2\left(-2\right)}
Square 310.
x=\frac{-310±\sqrt{96100+8\left(-1500\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-310±\sqrt{96100-12000}}{2\left(-2\right)}
Multiply 8 times -1500.
x=\frac{-310±\sqrt{84100}}{2\left(-2\right)}
Add 96100 to -12000.
x=\frac{-310±290}{2\left(-2\right)}
Take the square root of 84100.
x=\frac{-310±290}{-4}
Multiply 2 times -2.
x=-\frac{20}{-4}
Now solve the equation x=\frac{-310±290}{-4} when ± is plus. Add -310 to 290.
x=5
Divide -20 by -4.
x=-\frac{600}{-4}
Now solve the equation x=\frac{-310±290}{-4} when ± is minus. Subtract 290 from -310.
x=150
Divide -600 by -4.
x=5 x=150
The equation is now solved.
160x+150x-2x^{2}=150\times 80\times \frac{1}{8}
Use the distributive property to multiply 150-2x by x.
310x-2x^{2}=150\times 80\times \frac{1}{8}
Combine 160x and 150x to get 310x.
310x-2x^{2}=12000\times \frac{1}{8}
Multiply 150 and 80 to get 12000.
310x-2x^{2}=\frac{12000}{8}
Multiply 12000 and \frac{1}{8} to get \frac{12000}{8}.
310x-2x^{2}=1500
Divide 12000 by 8 to get 1500.
-2x^{2}+310x=1500
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+310x}{-2}=\frac{1500}{-2}
Divide both sides by -2.
x^{2}+\frac{310}{-2}x=\frac{1500}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-155x=\frac{1500}{-2}
Divide 310 by -2.
x^{2}-155x=-750
Divide 1500 by -2.
x^{2}-155x+\left(-\frac{155}{2}\right)^{2}=-750+\left(-\frac{155}{2}\right)^{2}
Divide -155, the coefficient of the x term, by 2 to get -\frac{155}{2}. Then add the square of -\frac{155}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-155x+\frac{24025}{4}=-750+\frac{24025}{4}
Square -\frac{155}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-155x+\frac{24025}{4}=\frac{21025}{4}
Add -750 to \frac{24025}{4}.
\left(x-\frac{155}{2}\right)^{2}=\frac{21025}{4}
Factor x^{2}-155x+\frac{24025}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{155}{2}\right)^{2}}=\sqrt{\frac{21025}{4}}
Take the square root of both sides of the equation.
x-\frac{155}{2}=\frac{145}{2} x-\frac{155}{2}=-\frac{145}{2}
Simplify.
x=150 x=5
Add \frac{155}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}