Evaluate
\frac{10691}{2}=5345.5
Factor
\frac{10691}{2} = 5345\frac{1}{2} = 5345.5
Share
Copied to clipboard
\begin{array}{l}\phantom{30)}\phantom{1}\\30\overline{)160365}\\\end{array}
Use the 1^{st} digit 1 from dividend 160365
\begin{array}{l}\phantom{30)}0\phantom{2}\\30\overline{)160365}\\\end{array}
Since 1 is less than 30, use the next digit 6 from dividend 160365 and add 0 to the quotient
\begin{array}{l}\phantom{30)}0\phantom{3}\\30\overline{)160365}\\\end{array}
Use the 2^{nd} digit 6 from dividend 160365
\begin{array}{l}\phantom{30)}00\phantom{4}\\30\overline{)160365}\\\end{array}
Since 16 is less than 30, use the next digit 0 from dividend 160365 and add 0 to the quotient
\begin{array}{l}\phantom{30)}00\phantom{5}\\30\overline{)160365}\\\end{array}
Use the 3^{rd} digit 0 from dividend 160365
\begin{array}{l}\phantom{30)}005\phantom{6}\\30\overline{)160365}\\\phantom{30)}\underline{\phantom{}150\phantom{999}}\\\phantom{30)9}10\\\end{array}
Find closest multiple of 30 to 160. We see that 5 \times 30 = 150 is the nearest. Now subtract 150 from 160 to get reminder 10. Add 5 to quotient.
\begin{array}{l}\phantom{30)}005\phantom{7}\\30\overline{)160365}\\\phantom{30)}\underline{\phantom{}150\phantom{999}}\\\phantom{30)9}103\\\end{array}
Use the 4^{th} digit 3 from dividend 160365
\begin{array}{l}\phantom{30)}0053\phantom{8}\\30\overline{)160365}\\\phantom{30)}\underline{\phantom{}150\phantom{999}}\\\phantom{30)9}103\\\phantom{30)}\underline{\phantom{99}90\phantom{99}}\\\phantom{30)99}13\\\end{array}
Find closest multiple of 30 to 103. We see that 3 \times 30 = 90 is the nearest. Now subtract 90 from 103 to get reminder 13. Add 3 to quotient.
\begin{array}{l}\phantom{30)}0053\phantom{9}\\30\overline{)160365}\\\phantom{30)}\underline{\phantom{}150\phantom{999}}\\\phantom{30)9}103\\\phantom{30)}\underline{\phantom{99}90\phantom{99}}\\\phantom{30)99}136\\\end{array}
Use the 5^{th} digit 6 from dividend 160365
\begin{array}{l}\phantom{30)}00534\phantom{10}\\30\overline{)160365}\\\phantom{30)}\underline{\phantom{}150\phantom{999}}\\\phantom{30)9}103\\\phantom{30)}\underline{\phantom{99}90\phantom{99}}\\\phantom{30)99}136\\\phantom{30)}\underline{\phantom{99}120\phantom{9}}\\\phantom{30)999}16\\\end{array}
Find closest multiple of 30 to 136. We see that 4 \times 30 = 120 is the nearest. Now subtract 120 from 136 to get reminder 16. Add 4 to quotient.
\begin{array}{l}\phantom{30)}00534\phantom{11}\\30\overline{)160365}\\\phantom{30)}\underline{\phantom{}150\phantom{999}}\\\phantom{30)9}103\\\phantom{30)}\underline{\phantom{99}90\phantom{99}}\\\phantom{30)99}136\\\phantom{30)}\underline{\phantom{99}120\phantom{9}}\\\phantom{30)999}165\\\end{array}
Use the 6^{th} digit 5 from dividend 160365
\begin{array}{l}\phantom{30)}005345\phantom{12}\\30\overline{)160365}\\\phantom{30)}\underline{\phantom{}150\phantom{999}}\\\phantom{30)9}103\\\phantom{30)}\underline{\phantom{99}90\phantom{99}}\\\phantom{30)99}136\\\phantom{30)}\underline{\phantom{99}120\phantom{9}}\\\phantom{30)999}165\\\phantom{30)}\underline{\phantom{999}150\phantom{}}\\\phantom{30)9999}15\\\end{array}
Find closest multiple of 30 to 165. We see that 5 \times 30 = 150 is the nearest. Now subtract 150 from 165 to get reminder 15. Add 5 to quotient.
\text{Quotient: }5345 \text{Reminder: }15
Since 15 is less than 30, stop the division. The reminder is 15. The topmost line 005345 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5345.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}