Evaluate
\frac{3200}{17}\approx 188.235294118
Factor
\frac{2 ^ {7} \cdot 5 ^ {2}}{17} = 188\frac{4}{17} = 188.23529411764707
Share
Copied to clipboard
\begin{array}{l}\phantom{85)}\phantom{1}\\85\overline{)16000}\\\end{array}
Use the 1^{st} digit 1 from dividend 16000
\begin{array}{l}\phantom{85)}0\phantom{2}\\85\overline{)16000}\\\end{array}
Since 1 is less than 85, use the next digit 6 from dividend 16000 and add 0 to the quotient
\begin{array}{l}\phantom{85)}0\phantom{3}\\85\overline{)16000}\\\end{array}
Use the 2^{nd} digit 6 from dividend 16000
\begin{array}{l}\phantom{85)}00\phantom{4}\\85\overline{)16000}\\\end{array}
Since 16 is less than 85, use the next digit 0 from dividend 16000 and add 0 to the quotient
\begin{array}{l}\phantom{85)}00\phantom{5}\\85\overline{)16000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 16000
\begin{array}{l}\phantom{85)}001\phantom{6}\\85\overline{)16000}\\\phantom{85)}\underline{\phantom{9}85\phantom{99}}\\\phantom{85)9}75\\\end{array}
Find closest multiple of 85 to 160. We see that 1 \times 85 = 85 is the nearest. Now subtract 85 from 160 to get reminder 75. Add 1 to quotient.
\begin{array}{l}\phantom{85)}001\phantom{7}\\85\overline{)16000}\\\phantom{85)}\underline{\phantom{9}85\phantom{99}}\\\phantom{85)9}750\\\end{array}
Use the 4^{th} digit 0 from dividend 16000
\begin{array}{l}\phantom{85)}0018\phantom{8}\\85\overline{)16000}\\\phantom{85)}\underline{\phantom{9}85\phantom{99}}\\\phantom{85)9}750\\\phantom{85)}\underline{\phantom{9}680\phantom{9}}\\\phantom{85)99}70\\\end{array}
Find closest multiple of 85 to 750. We see that 8 \times 85 = 680 is the nearest. Now subtract 680 from 750 to get reminder 70. Add 8 to quotient.
\begin{array}{l}\phantom{85)}0018\phantom{9}\\85\overline{)16000}\\\phantom{85)}\underline{\phantom{9}85\phantom{99}}\\\phantom{85)9}750\\\phantom{85)}\underline{\phantom{9}680\phantom{9}}\\\phantom{85)99}700\\\end{array}
Use the 5^{th} digit 0 from dividend 16000
\begin{array}{l}\phantom{85)}00188\phantom{10}\\85\overline{)16000}\\\phantom{85)}\underline{\phantom{9}85\phantom{99}}\\\phantom{85)9}750\\\phantom{85)}\underline{\phantom{9}680\phantom{9}}\\\phantom{85)99}700\\\phantom{85)}\underline{\phantom{99}680\phantom{}}\\\phantom{85)999}20\\\end{array}
Find closest multiple of 85 to 700. We see that 8 \times 85 = 680 is the nearest. Now subtract 680 from 700 to get reminder 20. Add 8 to quotient.
\text{Quotient: }188 \text{Reminder: }20
Since 20 is less than 85, stop the division. The reminder is 20. The topmost line 00188 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 188.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}