Skip to main content
Solve for h
Tick mark Image

Similar Problems from Web Search

Share

1600h^{2}-360h=\frac{9}{\frac{1}{12}}\times 11
Calculate 12 to the power of -1 and get \frac{1}{12}.
1600h^{2}-360h=9\times 12\times 11
Divide 9 by \frac{1}{12} by multiplying 9 by the reciprocal of \frac{1}{12}.
1600h^{2}-360h=108\times 11
Multiply 9 and 12 to get 108.
1600h^{2}-360h=1188
Multiply 108 and 11 to get 1188.
1600h^{2}-360h-1188=0
Subtract 1188 from both sides.
h=\frac{-\left(-360\right)±\sqrt{\left(-360\right)^{2}-4\times 1600\left(-1188\right)}}{2\times 1600}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1600 for a, -360 for b, and -1188 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{-\left(-360\right)±\sqrt{129600-4\times 1600\left(-1188\right)}}{2\times 1600}
Square -360.
h=\frac{-\left(-360\right)±\sqrt{129600-6400\left(-1188\right)}}{2\times 1600}
Multiply -4 times 1600.
h=\frac{-\left(-360\right)±\sqrt{129600+7603200}}{2\times 1600}
Multiply -6400 times -1188.
h=\frac{-\left(-360\right)±\sqrt{7732800}}{2\times 1600}
Add 129600 to 7603200.
h=\frac{-\left(-360\right)±120\sqrt{537}}{2\times 1600}
Take the square root of 7732800.
h=\frac{360±120\sqrt{537}}{2\times 1600}
The opposite of -360 is 360.
h=\frac{360±120\sqrt{537}}{3200}
Multiply 2 times 1600.
h=\frac{120\sqrt{537}+360}{3200}
Now solve the equation h=\frac{360±120\sqrt{537}}{3200} when ± is plus. Add 360 to 120\sqrt{537}.
h=\frac{3\sqrt{537}+9}{80}
Divide 360+120\sqrt{537} by 3200.
h=\frac{360-120\sqrt{537}}{3200}
Now solve the equation h=\frac{360±120\sqrt{537}}{3200} when ± is minus. Subtract 120\sqrt{537} from 360.
h=\frac{9-3\sqrt{537}}{80}
Divide 360-120\sqrt{537} by 3200.
h=\frac{3\sqrt{537}+9}{80} h=\frac{9-3\sqrt{537}}{80}
The equation is now solved.
1600h^{2}-360h=\frac{9}{\frac{1}{12}}\times 11
Calculate 12 to the power of -1 and get \frac{1}{12}.
1600h^{2}-360h=9\times 12\times 11
Divide 9 by \frac{1}{12} by multiplying 9 by the reciprocal of \frac{1}{12}.
1600h^{2}-360h=108\times 11
Multiply 9 and 12 to get 108.
1600h^{2}-360h=1188
Multiply 108 and 11 to get 1188.
\frac{1600h^{2}-360h}{1600}=\frac{1188}{1600}
Divide both sides by 1600.
h^{2}+\left(-\frac{360}{1600}\right)h=\frac{1188}{1600}
Dividing by 1600 undoes the multiplication by 1600.
h^{2}-\frac{9}{40}h=\frac{1188}{1600}
Reduce the fraction \frac{-360}{1600} to lowest terms by extracting and canceling out 40.
h^{2}-\frac{9}{40}h=\frac{297}{400}
Reduce the fraction \frac{1188}{1600} to lowest terms by extracting and canceling out 4.
h^{2}-\frac{9}{40}h+\left(-\frac{9}{80}\right)^{2}=\frac{297}{400}+\left(-\frac{9}{80}\right)^{2}
Divide -\frac{9}{40}, the coefficient of the x term, by 2 to get -\frac{9}{80}. Then add the square of -\frac{9}{80} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
h^{2}-\frac{9}{40}h+\frac{81}{6400}=\frac{297}{400}+\frac{81}{6400}
Square -\frac{9}{80} by squaring both the numerator and the denominator of the fraction.
h^{2}-\frac{9}{40}h+\frac{81}{6400}=\frac{4833}{6400}
Add \frac{297}{400} to \frac{81}{6400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(h-\frac{9}{80}\right)^{2}=\frac{4833}{6400}
Factor h^{2}-\frac{9}{40}h+\frac{81}{6400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(h-\frac{9}{80}\right)^{2}}=\sqrt{\frac{4833}{6400}}
Take the square root of both sides of the equation.
h-\frac{9}{80}=\frac{3\sqrt{537}}{80} h-\frac{9}{80}=-\frac{3\sqrt{537}}{80}
Simplify.
h=\frac{3\sqrt{537}+9}{80} h=\frac{9-3\sqrt{537}}{80}
Add \frac{9}{80} to both sides of the equation.