Solve for h
h=\frac{3\sqrt{537}+9}{80}\approx 0.981497267
h=\frac{9-3\sqrt{537}}{80}\approx -0.756497267
Quiz
Quadratic Equation
5 problems similar to:
1600 { h }^{ 2 } -360h = \frac{ 9 }{ { 12 }^{ -1 } } 11
Share
Copied to clipboard
1600h^{2}-360h=\frac{9}{\frac{1}{12}}\times 11
Calculate 12 to the power of -1 and get \frac{1}{12}.
1600h^{2}-360h=9\times 12\times 11
Divide 9 by \frac{1}{12} by multiplying 9 by the reciprocal of \frac{1}{12}.
1600h^{2}-360h=108\times 11
Multiply 9 and 12 to get 108.
1600h^{2}-360h=1188
Multiply 108 and 11 to get 1188.
1600h^{2}-360h-1188=0
Subtract 1188 from both sides.
h=\frac{-\left(-360\right)±\sqrt{\left(-360\right)^{2}-4\times 1600\left(-1188\right)}}{2\times 1600}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1600 for a, -360 for b, and -1188 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{-\left(-360\right)±\sqrt{129600-4\times 1600\left(-1188\right)}}{2\times 1600}
Square -360.
h=\frac{-\left(-360\right)±\sqrt{129600-6400\left(-1188\right)}}{2\times 1600}
Multiply -4 times 1600.
h=\frac{-\left(-360\right)±\sqrt{129600+7603200}}{2\times 1600}
Multiply -6400 times -1188.
h=\frac{-\left(-360\right)±\sqrt{7732800}}{2\times 1600}
Add 129600 to 7603200.
h=\frac{-\left(-360\right)±120\sqrt{537}}{2\times 1600}
Take the square root of 7732800.
h=\frac{360±120\sqrt{537}}{2\times 1600}
The opposite of -360 is 360.
h=\frac{360±120\sqrt{537}}{3200}
Multiply 2 times 1600.
h=\frac{120\sqrt{537}+360}{3200}
Now solve the equation h=\frac{360±120\sqrt{537}}{3200} when ± is plus. Add 360 to 120\sqrt{537}.
h=\frac{3\sqrt{537}+9}{80}
Divide 360+120\sqrt{537} by 3200.
h=\frac{360-120\sqrt{537}}{3200}
Now solve the equation h=\frac{360±120\sqrt{537}}{3200} when ± is minus. Subtract 120\sqrt{537} from 360.
h=\frac{9-3\sqrt{537}}{80}
Divide 360-120\sqrt{537} by 3200.
h=\frac{3\sqrt{537}+9}{80} h=\frac{9-3\sqrt{537}}{80}
The equation is now solved.
1600h^{2}-360h=\frac{9}{\frac{1}{12}}\times 11
Calculate 12 to the power of -1 and get \frac{1}{12}.
1600h^{2}-360h=9\times 12\times 11
Divide 9 by \frac{1}{12} by multiplying 9 by the reciprocal of \frac{1}{12}.
1600h^{2}-360h=108\times 11
Multiply 9 and 12 to get 108.
1600h^{2}-360h=1188
Multiply 108 and 11 to get 1188.
\frac{1600h^{2}-360h}{1600}=\frac{1188}{1600}
Divide both sides by 1600.
h^{2}+\left(-\frac{360}{1600}\right)h=\frac{1188}{1600}
Dividing by 1600 undoes the multiplication by 1600.
h^{2}-\frac{9}{40}h=\frac{1188}{1600}
Reduce the fraction \frac{-360}{1600} to lowest terms by extracting and canceling out 40.
h^{2}-\frac{9}{40}h=\frac{297}{400}
Reduce the fraction \frac{1188}{1600} to lowest terms by extracting and canceling out 4.
h^{2}-\frac{9}{40}h+\left(-\frac{9}{80}\right)^{2}=\frac{297}{400}+\left(-\frac{9}{80}\right)^{2}
Divide -\frac{9}{40}, the coefficient of the x term, by 2 to get -\frac{9}{80}. Then add the square of -\frac{9}{80} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
h^{2}-\frac{9}{40}h+\frac{81}{6400}=\frac{297}{400}+\frac{81}{6400}
Square -\frac{9}{80} by squaring both the numerator and the denominator of the fraction.
h^{2}-\frac{9}{40}h+\frac{81}{6400}=\frac{4833}{6400}
Add \frac{297}{400} to \frac{81}{6400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(h-\frac{9}{80}\right)^{2}=\frac{4833}{6400}
Factor h^{2}-\frac{9}{40}h+\frac{81}{6400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(h-\frac{9}{80}\right)^{2}}=\sqrt{\frac{4833}{6400}}
Take the square root of both sides of the equation.
h-\frac{9}{80}=\frac{3\sqrt{537}}{80} h-\frac{9}{80}=-\frac{3\sqrt{537}}{80}
Simplify.
h=\frac{3\sqrt{537}+9}{80} h=\frac{9-3\sqrt{537}}{80}
Add \frac{9}{80} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}