Evaluate
\frac{40}{7}\approx 5.714285714
Factor
\frac{2 ^ {3} \cdot 5}{7} = 5\frac{5}{7} = 5.714285714285714
Share
Copied to clipboard
\begin{array}{l}\phantom{280)}\phantom{1}\\280\overline{)1600}\\\end{array}
Use the 1^{st} digit 1 from dividend 1600
\begin{array}{l}\phantom{280)}0\phantom{2}\\280\overline{)1600}\\\end{array}
Since 1 is less than 280, use the next digit 6 from dividend 1600 and add 0 to the quotient
\begin{array}{l}\phantom{280)}0\phantom{3}\\280\overline{)1600}\\\end{array}
Use the 2^{nd} digit 6 from dividend 1600
\begin{array}{l}\phantom{280)}00\phantom{4}\\280\overline{)1600}\\\end{array}
Since 16 is less than 280, use the next digit 0 from dividend 1600 and add 0 to the quotient
\begin{array}{l}\phantom{280)}00\phantom{5}\\280\overline{)1600}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1600
\begin{array}{l}\phantom{280)}000\phantom{6}\\280\overline{)1600}\\\end{array}
Since 160 is less than 280, use the next digit 0 from dividend 1600 and add 0 to the quotient
\begin{array}{l}\phantom{280)}000\phantom{7}\\280\overline{)1600}\\\end{array}
Use the 4^{th} digit 0 from dividend 1600
\begin{array}{l}\phantom{280)}0005\phantom{8}\\280\overline{)1600}\\\phantom{280)}\underline{\phantom{}1400\phantom{}}\\\phantom{280)9}200\\\end{array}
Find closest multiple of 280 to 1600. We see that 5 \times 280 = 1400 is the nearest. Now subtract 1400 from 1600 to get reminder 200. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }200
Since 200 is less than 280, stop the division. The reminder is 200. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}