Evaluate
\frac{200}{21}\approx 9.523809524
Factor
\frac{2 ^ {3} \cdot 5 ^ {2}}{3 \cdot 7} = 9\frac{11}{21} = 9.523809523809524
Share
Copied to clipboard
\begin{array}{l}\phantom{168)}\phantom{1}\\168\overline{)1600}\\\end{array}
Use the 1^{st} digit 1 from dividend 1600
\begin{array}{l}\phantom{168)}0\phantom{2}\\168\overline{)1600}\\\end{array}
Since 1 is less than 168, use the next digit 6 from dividend 1600 and add 0 to the quotient
\begin{array}{l}\phantom{168)}0\phantom{3}\\168\overline{)1600}\\\end{array}
Use the 2^{nd} digit 6 from dividend 1600
\begin{array}{l}\phantom{168)}00\phantom{4}\\168\overline{)1600}\\\end{array}
Since 16 is less than 168, use the next digit 0 from dividend 1600 and add 0 to the quotient
\begin{array}{l}\phantom{168)}00\phantom{5}\\168\overline{)1600}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1600
\begin{array}{l}\phantom{168)}000\phantom{6}\\168\overline{)1600}\\\end{array}
Since 160 is less than 168, use the next digit 0 from dividend 1600 and add 0 to the quotient
\begin{array}{l}\phantom{168)}000\phantom{7}\\168\overline{)1600}\\\end{array}
Use the 4^{th} digit 0 from dividend 1600
\begin{array}{l}\phantom{168)}0009\phantom{8}\\168\overline{)1600}\\\phantom{168)}\underline{\phantom{}1512\phantom{}}\\\phantom{168)99}88\\\end{array}
Find closest multiple of 168 to 1600. We see that 9 \times 168 = 1512 is the nearest. Now subtract 1512 from 1600 to get reminder 88. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }88
Since 88 is less than 168, stop the division. The reminder is 88. The topmost line 0009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}