Skip to main content
Solve for x
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

160-\left(\frac{20}{\frac{1}{8}}-\frac{20\times \left(\frac{7}{8}\right)^{x}}{\frac{1}{8}}\right)=0.5
Divide each term of 20-20\times \left(\frac{7}{8}\right)^{x} by \frac{1}{8} to get \frac{20}{\frac{1}{8}}-\frac{20\times \left(\frac{7}{8}\right)^{x}}{\frac{1}{8}}.
160-\left(20\times 8-\frac{20\times \left(\frac{7}{8}\right)^{x}}{\frac{1}{8}}\right)=0.5
Divide 20 by \frac{1}{8} by multiplying 20 by the reciprocal of \frac{1}{8}.
160-\left(160-\frac{20\times \left(\frac{7}{8}\right)^{x}}{\frac{1}{8}}\right)=0.5
Multiply 20 and 8 to get 160.
160-\left(160-160\times \left(\frac{7}{8}\right)^{x}\right)=0.5
Divide 20\times \left(\frac{7}{8}\right)^{x} by \frac{1}{8} to get 160\times \left(\frac{7}{8}\right)^{x}.
160-160-\left(-160\times \left(\frac{7}{8}\right)^{x}\right)=0.5
To find the opposite of 160-160\times \left(\frac{7}{8}\right)^{x}, find the opposite of each term.
-\left(-160\times \left(\frac{7}{8}\right)^{x}\right)=0.5
Subtract 160 from 160 to get 0.
-160\times \left(\frac{7}{8}\right)^{x}=\frac{0.5}{-1}
Divide both sides by -1.
-160\times \left(\frac{7}{8}\right)^{x}=\frac{5}{-10}
Expand \frac{0.5}{-1} by multiplying both numerator and the denominator by 10.
-160\times \left(\frac{7}{8}\right)^{x}=-\frac{1}{2}
Reduce the fraction \frac{5}{-10} to lowest terms by extracting and canceling out 5.
160\times \left(\frac{7}{8}\right)^{x}=\frac{-\frac{1}{2}}{-1}
Divide both sides by -1.
160\times \left(\frac{7}{8}\right)^{x}=\frac{-1}{2\left(-1\right)}
Express \frac{-\frac{1}{2}}{-1} as a single fraction.
160\times \left(\frac{7}{8}\right)^{x}=\frac{1}{2}
Cancel out -1 in both numerator and denominator.
\left(\frac{7}{8}\right)^{x}=\frac{\frac{1}{2}}{160}
Divide both sides by 160.
\left(\frac{7}{8}\right)^{x}=\frac{1}{2\times 160}
Express \frac{\frac{1}{2}}{160} as a single fraction.
\left(\frac{7}{8}\right)^{x}=\frac{1}{320}
Multiply 2 and 160 to get 320.
\log(\left(\frac{7}{8}\right)^{x})=\log(\frac{1}{320})
Take the logarithm of both sides of the equation.
x\log(\frac{7}{8})=\log(\frac{1}{320})
The logarithm of a number raised to a power is the power times the logarithm of the number.
x=\frac{\log(\frac{1}{320})}{\log(\frac{7}{8})}
Divide both sides by \log(\frac{7}{8}).
x=\log_{\frac{7}{8}}\left(\frac{1}{320}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).