Solve for x
x=-\log_{0.875}\left(320\right)\approx 43.198238874
Solve for x (complex solution)
x=\frac{i\times 2\pi n_{1}}{\ln(0.875)}-\log_{0.875}\left(320\right)
n_{1}\in \mathrm{Z}
Graph
Share
Copied to clipboard
160-\left(\frac{20}{\frac{1}{8}}-\frac{20\times \left(\frac{7}{8}\right)^{x}}{\frac{1}{8}}\right)=0.5
Divide each term of 20-20\times \left(\frac{7}{8}\right)^{x} by \frac{1}{8} to get \frac{20}{\frac{1}{8}}-\frac{20\times \left(\frac{7}{8}\right)^{x}}{\frac{1}{8}}.
160-\left(20\times 8-\frac{20\times \left(\frac{7}{8}\right)^{x}}{\frac{1}{8}}\right)=0.5
Divide 20 by \frac{1}{8} by multiplying 20 by the reciprocal of \frac{1}{8}.
160-\left(160-\frac{20\times \left(\frac{7}{8}\right)^{x}}{\frac{1}{8}}\right)=0.5
Multiply 20 and 8 to get 160.
160-\left(160-160\times \left(\frac{7}{8}\right)^{x}\right)=0.5
Divide 20\times \left(\frac{7}{8}\right)^{x} by \frac{1}{8} to get 160\times \left(\frac{7}{8}\right)^{x}.
160-160-\left(-160\times \left(\frac{7}{8}\right)^{x}\right)=0.5
To find the opposite of 160-160\times \left(\frac{7}{8}\right)^{x}, find the opposite of each term.
-\left(-160\times \left(\frac{7}{8}\right)^{x}\right)=0.5
Subtract 160 from 160 to get 0.
-160\times \left(\frac{7}{8}\right)^{x}=\frac{0.5}{-1}
Divide both sides by -1.
-160\times \left(\frac{7}{8}\right)^{x}=\frac{5}{-10}
Expand \frac{0.5}{-1} by multiplying both numerator and the denominator by 10.
-160\times \left(\frac{7}{8}\right)^{x}=-\frac{1}{2}
Reduce the fraction \frac{5}{-10} to lowest terms by extracting and canceling out 5.
160\times \left(\frac{7}{8}\right)^{x}=\frac{-\frac{1}{2}}{-1}
Divide both sides by -1.
160\times \left(\frac{7}{8}\right)^{x}=\frac{-1}{2\left(-1\right)}
Express \frac{-\frac{1}{2}}{-1} as a single fraction.
160\times \left(\frac{7}{8}\right)^{x}=\frac{1}{2}
Cancel out -1 in both numerator and denominator.
\left(\frac{7}{8}\right)^{x}=\frac{\frac{1}{2}}{160}
Divide both sides by 160.
\left(\frac{7}{8}\right)^{x}=\frac{1}{2\times 160}
Express \frac{\frac{1}{2}}{160} as a single fraction.
\left(\frac{7}{8}\right)^{x}=\frac{1}{320}
Multiply 2 and 160 to get 320.
\log(\left(\frac{7}{8}\right)^{x})=\log(\frac{1}{320})
Take the logarithm of both sides of the equation.
x\log(\frac{7}{8})=\log(\frac{1}{320})
The logarithm of a number raised to a power is the power times the logarithm of the number.
x=\frac{\log(\frac{1}{320})}{\log(\frac{7}{8})}
Divide both sides by \log(\frac{7}{8}).
x=\log_{\frac{7}{8}}\left(\frac{1}{320}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}