Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

160t^{2}+358t-9=0
Substitute t for x^{2}.
t=\frac{-358±\sqrt{358^{2}-4\times 160\left(-9\right)}}{2\times 160}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 160 for a, 358 for b, and -9 for c in the quadratic formula.
t=\frac{-358±2\sqrt{33481}}{320}
Do the calculations.
t=\frac{\sqrt{33481}-179}{160} t=\frac{-\sqrt{33481}-179}{160}
Solve the equation t=\frac{-358±2\sqrt{33481}}{320} when ± is plus and when ± is minus.
x=-\sqrt{\frac{\sqrt{33481}-179}{160}} x=\sqrt{\frac{\sqrt{33481}-179}{160}} x=-i\sqrt{\frac{\sqrt{33481}+179}{160}} x=i\sqrt{\frac{\sqrt{33481}+179}{160}}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
160t^{2}+358t-9=0
Substitute t for x^{2}.
t=\frac{-358±\sqrt{358^{2}-4\times 160\left(-9\right)}}{2\times 160}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 160 for a, 358 for b, and -9 for c in the quadratic formula.
t=\frac{-358±2\sqrt{33481}}{320}
Do the calculations.
t=\frac{\sqrt{33481}-179}{160} t=\frac{-\sqrt{33481}-179}{160}
Solve the equation t=\frac{-358±2\sqrt{33481}}{320} when ± is plus and when ± is minus.
x=\frac{\sqrt{\frac{\sqrt{33481}-179}{40}}}{2} x=-\frac{\sqrt{\frac{\sqrt{33481}-179}{40}}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.