Solve for x (complex solution)
x=\frac{i\sqrt{10\left(\sqrt{33481}+179\right)}}{40}\approx 1.504115481i
x=-\frac{i\sqrt{10\left(\sqrt{33481}+179\right)}}{40}\approx -0-1.504115481i
x=-\frac{\sqrt{10\left(\sqrt{33481}-179\right)}}{40}\approx -0.15768126
x=\frac{\sqrt{10\left(\sqrt{33481}-179\right)}}{40}\approx 0.15768126
Solve for x
x=-\frac{\sqrt{10\left(\sqrt{33481}-179\right)}}{40}\approx -0.15768126
x=\frac{\sqrt{10\left(\sqrt{33481}-179\right)}}{40}\approx 0.15768126
Graph
Share
Copied to clipboard
160t^{2}+358t-9=0
Substitute t for x^{2}.
t=\frac{-358±\sqrt{358^{2}-4\times 160\left(-9\right)}}{2\times 160}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 160 for a, 358 for b, and -9 for c in the quadratic formula.
t=\frac{-358±2\sqrt{33481}}{320}
Do the calculations.
t=\frac{\sqrt{33481}-179}{160} t=\frac{-\sqrt{33481}-179}{160}
Solve the equation t=\frac{-358±2\sqrt{33481}}{320} when ± is plus and when ± is minus.
x=-\sqrt{\frac{\sqrt{33481}-179}{160}} x=\sqrt{\frac{\sqrt{33481}-179}{160}} x=-i\sqrt{\frac{\sqrt{33481}+179}{160}} x=i\sqrt{\frac{\sqrt{33481}+179}{160}}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
160t^{2}+358t-9=0
Substitute t for x^{2}.
t=\frac{-358±\sqrt{358^{2}-4\times 160\left(-9\right)}}{2\times 160}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 160 for a, 358 for b, and -9 for c in the quadratic formula.
t=\frac{-358±2\sqrt{33481}}{320}
Do the calculations.
t=\frac{\sqrt{33481}-179}{160} t=\frac{-\sqrt{33481}-179}{160}
Solve the equation t=\frac{-358±2\sqrt{33481}}{320} when ± is plus and when ± is minus.
x=\frac{\sqrt{\frac{\sqrt{33481}-179}{40}}}{2} x=-\frac{\sqrt{\frac{\sqrt{33481}-179}{40}}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}