Solve for x
x=0.075
x=0.375
Graph
Share
Copied to clipboard
160x^{2}-72x+4.5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-72\right)±\sqrt{\left(-72\right)^{2}-4\times 160\times 4.5}}{2\times 160}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 160 for a, -72 for b, and 4.5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-72\right)±\sqrt{5184-4\times 160\times 4.5}}{2\times 160}
Square -72.
x=\frac{-\left(-72\right)±\sqrt{5184-640\times 4.5}}{2\times 160}
Multiply -4 times 160.
x=\frac{-\left(-72\right)±\sqrt{5184-2880}}{2\times 160}
Multiply -640 times 4.5.
x=\frac{-\left(-72\right)±\sqrt{2304}}{2\times 160}
Add 5184 to -2880.
x=\frac{-\left(-72\right)±48}{2\times 160}
Take the square root of 2304.
x=\frac{72±48}{2\times 160}
The opposite of -72 is 72.
x=\frac{72±48}{320}
Multiply 2 times 160.
x=\frac{120}{320}
Now solve the equation x=\frac{72±48}{320} when ± is plus. Add 72 to 48.
x=\frac{3}{8}
Reduce the fraction \frac{120}{320} to lowest terms by extracting and canceling out 40.
x=\frac{24}{320}
Now solve the equation x=\frac{72±48}{320} when ± is minus. Subtract 48 from 72.
x=\frac{3}{40}
Reduce the fraction \frac{24}{320} to lowest terms by extracting and canceling out 8.
x=\frac{3}{8} x=\frac{3}{40}
The equation is now solved.
160x^{2}-72x+4.5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
160x^{2}-72x+4.5-4.5=-4.5
Subtract 4.5 from both sides of the equation.
160x^{2}-72x=-4.5
Subtracting 4.5 from itself leaves 0.
\frac{160x^{2}-72x}{160}=-\frac{4.5}{160}
Divide both sides by 160.
x^{2}+\left(-\frac{72}{160}\right)x=-\frac{4.5}{160}
Dividing by 160 undoes the multiplication by 160.
x^{2}-\frac{9}{20}x=-\frac{4.5}{160}
Reduce the fraction \frac{-72}{160} to lowest terms by extracting and canceling out 8.
x^{2}-\frac{9}{20}x=-0.028125
Divide -4.5 by 160.
x^{2}-\frac{9}{20}x+\left(-\frac{9}{40}\right)^{2}=-0.028125+\left(-\frac{9}{40}\right)^{2}
Divide -\frac{9}{20}, the coefficient of the x term, by 2 to get -\frac{9}{40}. Then add the square of -\frac{9}{40} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{9}{20}x+\frac{81}{1600}=-0.028125+\frac{81}{1600}
Square -\frac{9}{40} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{9}{20}x+\frac{81}{1600}=\frac{9}{400}
Add -0.028125 to \frac{81}{1600} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{9}{40}\right)^{2}=\frac{9}{400}
Factor x^{2}-\frac{9}{20}x+\frac{81}{1600}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{40}\right)^{2}}=\sqrt{\frac{9}{400}}
Take the square root of both sides of the equation.
x-\frac{9}{40}=\frac{3}{20} x-\frac{9}{40}=-\frac{3}{20}
Simplify.
x=\frac{3}{8} x=\frac{3}{40}
Add \frac{9}{40} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}