Evaluate
\frac{5}{2}=2.5
Factor
\frac{5}{2} = 2\frac{1}{2} = 2.5
Share
Copied to clipboard
\begin{array}{l}\phantom{64)}\phantom{1}\\64\overline{)160}\\\end{array}
Use the 1^{st} digit 1 from dividend 160
\begin{array}{l}\phantom{64)}0\phantom{2}\\64\overline{)160}\\\end{array}
Since 1 is less than 64, use the next digit 6 from dividend 160 and add 0 to the quotient
\begin{array}{l}\phantom{64)}0\phantom{3}\\64\overline{)160}\\\end{array}
Use the 2^{nd} digit 6 from dividend 160
\begin{array}{l}\phantom{64)}00\phantom{4}\\64\overline{)160}\\\end{array}
Since 16 is less than 64, use the next digit 0 from dividend 160 and add 0 to the quotient
\begin{array}{l}\phantom{64)}00\phantom{5}\\64\overline{)160}\\\end{array}
Use the 3^{rd} digit 0 from dividend 160
\begin{array}{l}\phantom{64)}002\phantom{6}\\64\overline{)160}\\\phantom{64)}\underline{\phantom{}128\phantom{}}\\\phantom{64)9}32\\\end{array}
Find closest multiple of 64 to 160. We see that 2 \times 64 = 128 is the nearest. Now subtract 128 from 160 to get reminder 32. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }32
Since 32 is less than 64, stop the division. The reminder is 32. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}