Evaluate
\frac{160}{23}\approx 6.956521739
Factor
\frac{2 ^ {5} \cdot 5}{23} = 6\frac{22}{23} = 6.956521739130435
Share
Copied to clipboard
\begin{array}{l}\phantom{23)}\phantom{1}\\23\overline{)160}\\\end{array}
Use the 1^{st} digit 1 from dividend 160
\begin{array}{l}\phantom{23)}0\phantom{2}\\23\overline{)160}\\\end{array}
Since 1 is less than 23, use the next digit 6 from dividend 160 and add 0 to the quotient
\begin{array}{l}\phantom{23)}0\phantom{3}\\23\overline{)160}\\\end{array}
Use the 2^{nd} digit 6 from dividend 160
\begin{array}{l}\phantom{23)}00\phantom{4}\\23\overline{)160}\\\end{array}
Since 16 is less than 23, use the next digit 0 from dividend 160 and add 0 to the quotient
\begin{array}{l}\phantom{23)}00\phantom{5}\\23\overline{)160}\\\end{array}
Use the 3^{rd} digit 0 from dividend 160
\begin{array}{l}\phantom{23)}006\phantom{6}\\23\overline{)160}\\\phantom{23)}\underline{\phantom{}138\phantom{}}\\\phantom{23)9}22\\\end{array}
Find closest multiple of 23 to 160. We see that 6 \times 23 = 138 is the nearest. Now subtract 138 from 160 to get reminder 22. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }22
Since 22 is less than 23, stop the division. The reminder is 22. The topmost line 006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}