Evaluate
8
Factor
2^{3}
Share
Copied to clipboard
\begin{array}{l}\phantom{20)}\phantom{1}\\20\overline{)160}\\\end{array}
Use the 1^{st} digit 1 from dividend 160
\begin{array}{l}\phantom{20)}0\phantom{2}\\20\overline{)160}\\\end{array}
Since 1 is less than 20, use the next digit 6 from dividend 160 and add 0 to the quotient
\begin{array}{l}\phantom{20)}0\phantom{3}\\20\overline{)160}\\\end{array}
Use the 2^{nd} digit 6 from dividend 160
\begin{array}{l}\phantom{20)}00\phantom{4}\\20\overline{)160}\\\end{array}
Since 16 is less than 20, use the next digit 0 from dividend 160 and add 0 to the quotient
\begin{array}{l}\phantom{20)}00\phantom{5}\\20\overline{)160}\\\end{array}
Use the 3^{rd} digit 0 from dividend 160
\begin{array}{l}\phantom{20)}008\phantom{6}\\20\overline{)160}\\\phantom{20)}\underline{\phantom{}160\phantom{}}\\\phantom{20)999}0\\\end{array}
Find closest multiple of 20 to 160. We see that 8 \times 20 = 160 is the nearest. Now subtract 160 from 160 to get reminder 0. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }0
Since 0 is less than 20, stop the division. The reminder is 0. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}