Solve for x
x=40
x=52
Graph
Share
Copied to clipboard
-x^{2}+92x-1920=160
Swap sides so that all variable terms are on the left hand side.
-x^{2}+92x-1920-160=0
Subtract 160 from both sides.
-x^{2}+92x-2080=0
Subtract 160 from -1920 to get -2080.
x=\frac{-92±\sqrt{92^{2}-4\left(-1\right)\left(-2080\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 92 for b, and -2080 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-92±\sqrt{8464-4\left(-1\right)\left(-2080\right)}}{2\left(-1\right)}
Square 92.
x=\frac{-92±\sqrt{8464+4\left(-2080\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-92±\sqrt{8464-8320}}{2\left(-1\right)}
Multiply 4 times -2080.
x=\frac{-92±\sqrt{144}}{2\left(-1\right)}
Add 8464 to -8320.
x=\frac{-92±12}{2\left(-1\right)}
Take the square root of 144.
x=\frac{-92±12}{-2}
Multiply 2 times -1.
x=-\frac{80}{-2}
Now solve the equation x=\frac{-92±12}{-2} when ± is plus. Add -92 to 12.
x=40
Divide -80 by -2.
x=-\frac{104}{-2}
Now solve the equation x=\frac{-92±12}{-2} when ± is minus. Subtract 12 from -92.
x=52
Divide -104 by -2.
x=40 x=52
The equation is now solved.
-x^{2}+92x-1920=160
Swap sides so that all variable terms are on the left hand side.
-x^{2}+92x=160+1920
Add 1920 to both sides.
-x^{2}+92x=2080
Add 160 and 1920 to get 2080.
\frac{-x^{2}+92x}{-1}=\frac{2080}{-1}
Divide both sides by -1.
x^{2}+\frac{92}{-1}x=\frac{2080}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-92x=\frac{2080}{-1}
Divide 92 by -1.
x^{2}-92x=-2080
Divide 2080 by -1.
x^{2}-92x+\left(-46\right)^{2}=-2080+\left(-46\right)^{2}
Divide -92, the coefficient of the x term, by 2 to get -46. Then add the square of -46 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-92x+2116=-2080+2116
Square -46.
x^{2}-92x+2116=36
Add -2080 to 2116.
\left(x-46\right)^{2}=36
Factor x^{2}-92x+2116. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-46\right)^{2}}=\sqrt{36}
Take the square root of both sides of the equation.
x-46=6 x-46=-6
Simplify.
x=52 x=40
Add 46 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}