Skip to main content
Solve for h
Tick mark Image

Similar Problems from Web Search

Share

20h^{2}+10h=16.8
Swap sides so that all variable terms are on the left hand side.
20h^{2}+10h-16.8=0
Subtract 16.8 from both sides.
h=\frac{-10±\sqrt{10^{2}-4\times 20\left(-16.8\right)}}{2\times 20}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 20 for a, 10 for b, and -16.8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{-10±\sqrt{100-4\times 20\left(-16.8\right)}}{2\times 20}
Square 10.
h=\frac{-10±\sqrt{100-80\left(-16.8\right)}}{2\times 20}
Multiply -4 times 20.
h=\frac{-10±\sqrt{100+1344}}{2\times 20}
Multiply -80 times -16.8.
h=\frac{-10±\sqrt{1444}}{2\times 20}
Add 100 to 1344.
h=\frac{-10±38}{2\times 20}
Take the square root of 1444.
h=\frac{-10±38}{40}
Multiply 2 times 20.
h=\frac{28}{40}
Now solve the equation h=\frac{-10±38}{40} when ± is plus. Add -10 to 38.
h=\frac{7}{10}
Reduce the fraction \frac{28}{40} to lowest terms by extracting and canceling out 4.
h=-\frac{48}{40}
Now solve the equation h=\frac{-10±38}{40} when ± is minus. Subtract 38 from -10.
h=-\frac{6}{5}
Reduce the fraction \frac{-48}{40} to lowest terms by extracting and canceling out 8.
h=\frac{7}{10} h=-\frac{6}{5}
The equation is now solved.
20h^{2}+10h=16.8
Swap sides so that all variable terms are on the left hand side.
\frac{20h^{2}+10h}{20}=\frac{16.8}{20}
Divide both sides by 20.
h^{2}+\frac{10}{20}h=\frac{16.8}{20}
Dividing by 20 undoes the multiplication by 20.
h^{2}+\frac{1}{2}h=\frac{16.8}{20}
Reduce the fraction \frac{10}{20} to lowest terms by extracting and canceling out 10.
h^{2}+\frac{1}{2}h=0.84
Divide 16.8 by 20.
h^{2}+\frac{1}{2}h+\left(\frac{1}{4}\right)^{2}=0.84+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
h^{2}+\frac{1}{2}h+\frac{1}{16}=0.84+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
h^{2}+\frac{1}{2}h+\frac{1}{16}=\frac{361}{400}
Add 0.84 to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(h+\frac{1}{4}\right)^{2}=\frac{361}{400}
Factor h^{2}+\frac{1}{2}h+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(h+\frac{1}{4}\right)^{2}}=\sqrt{\frac{361}{400}}
Take the square root of both sides of the equation.
h+\frac{1}{4}=\frac{19}{20} h+\frac{1}{4}=-\frac{19}{20}
Simplify.
h=\frac{7}{10} h=-\frac{6}{5}
Subtract \frac{1}{4} from both sides of the equation.