16.1V = 18.8 \frac{ R }{ { R }_{ 1 } +21 \Omega }
Solve for R
R=V\times \frac{161R_{1}+3381\Omega }{188}
R_{1}\neq -21\Omega
Solve for R_1
\left\{\begin{matrix}R_{1}=-21\Omega +\frac{188R}{161V}\text{, }&R\neq 0\text{ and }V\neq 0\\R_{1}\neq -21\Omega \text{, }&V=0\text{ and }R=0\end{matrix}\right.
Share
Copied to clipboard
16.1V\left(R_{1}+21\Omega \right)=18.8R
Multiply both sides of the equation by R_{1}+21\Omega .
16.1VR_{1}+338.1\Omega V=18.8R
Use the distributive property to multiply 16.1V by R_{1}+21\Omega .
18.8R=16.1VR_{1}+338.1\Omega V
Swap sides so that all variable terms are on the left hand side.
18.8R=\frac{161R_{1}V+3381V\Omega }{10}
The equation is in standard form.
\frac{18.8R}{18.8}=\frac{V\times \frac{161R_{1}+3381\Omega }{10}}{18.8}
Divide both sides of the equation by 18.8, which is the same as multiplying both sides by the reciprocal of the fraction.
R=\frac{V\times \frac{161R_{1}+3381\Omega }{10}}{18.8}
Dividing by 18.8 undoes the multiplication by 18.8.
R=\frac{161V\left(R_{1}+21\Omega \right)}{188}
Divide V\times \frac{161R_{1}+3381\Omega }{10} by 18.8 by multiplying V\times \frac{161R_{1}+3381\Omega }{10} by the reciprocal of 18.8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}