Solve for V
V=\frac{94R_{1}v}{5\times \frac{161R_{1}+3381\Omega }{10}}
R_{1}\neq -21\Omega
Solve for R_1
\left\{\begin{matrix}\\R_{1}\neq 0\text{, }&\text{unconditionally}\\R_{1}=\frac{3381V\Omega }{188v-161V}\text{, }&\Omega \neq 0\text{ and }v\neq 0\text{ and }V\neq \frac{188v}{161}\\R_{1}\neq -21\Omega \text{, }&V=0\text{ and }v=0\end{matrix}\right.
Quiz
Algebra
5 problems similar to:
16.1 V = 18.8 v \cdot \frac { R _ { 1 } } { R _ { 1 } + 21 \Omega }
Share
Copied to clipboard
16.1V\left(R_{1}+21\Omega \right)=18.8vR_{1}
Multiply both sides of the equation by R_{1}+21\Omega .
16.1VR_{1}+338.1\Omega V=18.8vR_{1}
Use the distributive property to multiply 16.1V by R_{1}+21\Omega .
\left(16.1R_{1}+338.1\Omega \right)V=18.8vR_{1}
Combine all terms containing V.
\frac{161R_{1}+3381\Omega }{10}V=\frac{94R_{1}v}{5}
The equation is in standard form.
\frac{10\times \frac{161R_{1}+3381\Omega }{10}V}{161R_{1}+3381\Omega }=\frac{94R_{1}v}{5\times \frac{161R_{1}+3381\Omega }{10}}
Divide both sides by 16.1R_{1}+338.1\Omega .
V=\frac{94R_{1}v}{5\times \frac{161R_{1}+3381\Omega }{10}}
Dividing by 16.1R_{1}+338.1\Omega undoes the multiplication by 16.1R_{1}+338.1\Omega .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}