Solve for x
x = \frac{11}{4} = 2\frac{3}{4} = 2.75
Graph
Share
Copied to clipboard
16-8x-4+5\left(x-\frac{3}{4}\right)=0
Use the distributive property to multiply -4 by 2x+1.
12-8x+5\left(x-\frac{3}{4}\right)=0
Subtract 4 from 16 to get 12.
12-8x+5x+5\left(-\frac{3}{4}\right)=0
Use the distributive property to multiply 5 by x-\frac{3}{4}.
12-8x+5x+\frac{5\left(-3\right)}{4}=0
Express 5\left(-\frac{3}{4}\right) as a single fraction.
12-8x+5x+\frac{-15}{4}=0
Multiply 5 and -3 to get -15.
12-8x+5x-\frac{15}{4}=0
Fraction \frac{-15}{4} can be rewritten as -\frac{15}{4} by extracting the negative sign.
12-3x-\frac{15}{4}=0
Combine -8x and 5x to get -3x.
\frac{48}{4}-3x-\frac{15}{4}=0
Convert 12 to fraction \frac{48}{4}.
\frac{48-15}{4}-3x=0
Since \frac{48}{4} and \frac{15}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{33}{4}-3x=0
Subtract 15 from 48 to get 33.
-3x=-\frac{33}{4}
Subtract \frac{33}{4} from both sides. Anything subtracted from zero gives its negation.
x=\frac{-\frac{33}{4}}{-3}
Divide both sides by -3.
x=\frac{-33}{4\left(-3\right)}
Express \frac{-\frac{33}{4}}{-3} as a single fraction.
x=\frac{-33}{-12}
Multiply 4 and -3 to get -12.
x=\frac{11}{4}
Reduce the fraction \frac{-33}{-12} to lowest terms by extracting and canceling out -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}