Solve for x
x=-\frac{1}{5}=-0.2
Graph
Share
Copied to clipboard
16-\left(9-6x+x^{2}\right)=9-\left(x+2\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-x\right)^{2}.
16-9+6x-x^{2}=9-\left(x+2\right)^{2}
To find the opposite of 9-6x+x^{2}, find the opposite of each term.
7+6x-x^{2}=9-\left(x+2\right)^{2}
Subtract 9 from 16 to get 7.
7+6x-x^{2}=9-\left(x^{2}+4x+4\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
7+6x-x^{2}=9-x^{2}-4x-4
To find the opposite of x^{2}+4x+4, find the opposite of each term.
7+6x-x^{2}=5-x^{2}-4x
Subtract 4 from 9 to get 5.
7+6x-x^{2}+x^{2}=5-4x
Add x^{2} to both sides.
7+6x=5-4x
Combine -x^{2} and x^{2} to get 0.
7+6x+4x=5
Add 4x to both sides.
7+10x=5
Combine 6x and 4x to get 10x.
10x=5-7
Subtract 7 from both sides.
10x=-2
Subtract 7 from 5 to get -2.
x=\frac{-2}{10}
Divide both sides by 10.
x=-\frac{1}{5}
Reduce the fraction \frac{-2}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}