Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

16+x^{2}+16-8x+x^{2}+16=\left(4\sqrt{5}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-x\right)^{2}.
32+x^{2}-8x+x^{2}+16=\left(4\sqrt{5}\right)^{2}
Add 16 and 16 to get 32.
32+2x^{2}-8x+16=\left(4\sqrt{5}\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
48+2x^{2}-8x=\left(4\sqrt{5}\right)^{2}
Add 32 and 16 to get 48.
48+2x^{2}-8x=4^{2}\left(\sqrt{5}\right)^{2}
Expand \left(4\sqrt{5}\right)^{2}.
48+2x^{2}-8x=16\left(\sqrt{5}\right)^{2}
Calculate 4 to the power of 2 and get 16.
48+2x^{2}-8x=16\times 5
The square of \sqrt{5} is 5.
48+2x^{2}-8x=80
Multiply 16 and 5 to get 80.
48+2x^{2}-8x-80=0
Subtract 80 from both sides.
-32+2x^{2}-8x=0
Subtract 80 from 48 to get -32.
2x^{2}-8x-32=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\left(-32\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -8 for b, and -32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\left(-32\right)}}{2\times 2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-8\left(-32\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-8\right)±\sqrt{64+256}}{2\times 2}
Multiply -8 times -32.
x=\frac{-\left(-8\right)±\sqrt{320}}{2\times 2}
Add 64 to 256.
x=\frac{-\left(-8\right)±8\sqrt{5}}{2\times 2}
Take the square root of 320.
x=\frac{8±8\sqrt{5}}{2\times 2}
The opposite of -8 is 8.
x=\frac{8±8\sqrt{5}}{4}
Multiply 2 times 2.
x=\frac{8\sqrt{5}+8}{4}
Now solve the equation x=\frac{8±8\sqrt{5}}{4} when ± is plus. Add 8 to 8\sqrt{5}.
x=2\sqrt{5}+2
Divide 8+8\sqrt{5} by 4.
x=\frac{8-8\sqrt{5}}{4}
Now solve the equation x=\frac{8±8\sqrt{5}}{4} when ± is minus. Subtract 8\sqrt{5} from 8.
x=2-2\sqrt{5}
Divide 8-8\sqrt{5} by 4.
x=2\sqrt{5}+2 x=2-2\sqrt{5}
The equation is now solved.
16+x^{2}+16-8x+x^{2}+16=\left(4\sqrt{5}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-x\right)^{2}.
32+x^{2}-8x+x^{2}+16=\left(4\sqrt{5}\right)^{2}
Add 16 and 16 to get 32.
32+2x^{2}-8x+16=\left(4\sqrt{5}\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
48+2x^{2}-8x=\left(4\sqrt{5}\right)^{2}
Add 32 and 16 to get 48.
48+2x^{2}-8x=4^{2}\left(\sqrt{5}\right)^{2}
Expand \left(4\sqrt{5}\right)^{2}.
48+2x^{2}-8x=16\left(\sqrt{5}\right)^{2}
Calculate 4 to the power of 2 and get 16.
48+2x^{2}-8x=16\times 5
The square of \sqrt{5} is 5.
48+2x^{2}-8x=80
Multiply 16 and 5 to get 80.
2x^{2}-8x=80-48
Subtract 48 from both sides.
2x^{2}-8x=32
Subtract 48 from 80 to get 32.
\frac{2x^{2}-8x}{2}=\frac{32}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{8}{2}\right)x=\frac{32}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-4x=\frac{32}{2}
Divide -8 by 2.
x^{2}-4x=16
Divide 32 by 2.
x^{2}-4x+\left(-2\right)^{2}=16+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=16+4
Square -2.
x^{2}-4x+4=20
Add 16 to 4.
\left(x-2\right)^{2}=20
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{20}
Take the square root of both sides of the equation.
x-2=2\sqrt{5} x-2=-2\sqrt{5}
Simplify.
x=2\sqrt{5}+2 x=2-2\sqrt{5}
Add 2 to both sides of the equation.