Solve for x
x=\frac{21\sqrt{5}-51}{2}\approx -2.021286236
x=\frac{-21\sqrt{5}-51}{2}\approx -48.978713764
Graph
Quiz
Quadratic Equation
5 problems similar to:
16+ \frac{ 1 }{ 9 } { x }^{ 2 } + \frac{ 8 }{ 3 } x-5+3x=0
Share
Copied to clipboard
11+\frac{1}{9}x^{2}+\frac{8}{3}x+3x=0
Subtract 5 from 16 to get 11.
11+\frac{1}{9}x^{2}+\frac{17}{3}x=0
Combine \frac{8}{3}x and 3x to get \frac{17}{3}x.
\frac{1}{9}x^{2}+\frac{17}{3}x+11=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{17}{3}±\sqrt{\left(\frac{17}{3}\right)^{2}-4\times \frac{1}{9}\times 11}}{2\times \frac{1}{9}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{9} for a, \frac{17}{3} for b, and 11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{17}{3}±\sqrt{\frac{289}{9}-4\times \frac{1}{9}\times 11}}{2\times \frac{1}{9}}
Square \frac{17}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{17}{3}±\sqrt{\frac{289}{9}-\frac{4}{9}\times 11}}{2\times \frac{1}{9}}
Multiply -4 times \frac{1}{9}.
x=\frac{-\frac{17}{3}±\sqrt{\frac{289-44}{9}}}{2\times \frac{1}{9}}
Multiply -\frac{4}{9} times 11.
x=\frac{-\frac{17}{3}±\sqrt{\frac{245}{9}}}{2\times \frac{1}{9}}
Add \frac{289}{9} to -\frac{44}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{17}{3}±\frac{7\sqrt{5}}{3}}{2\times \frac{1}{9}}
Take the square root of \frac{245}{9}.
x=\frac{-\frac{17}{3}±\frac{7\sqrt{5}}{3}}{\frac{2}{9}}
Multiply 2 times \frac{1}{9}.
x=\frac{7\sqrt{5}-17}{\frac{2}{9}\times 3}
Now solve the equation x=\frac{-\frac{17}{3}±\frac{7\sqrt{5}}{3}}{\frac{2}{9}} when ± is plus. Add -\frac{17}{3} to \frac{7\sqrt{5}}{3}.
x=\frac{21\sqrt{5}-51}{2}
Divide \frac{-17+7\sqrt{5}}{3} by \frac{2}{9} by multiplying \frac{-17+7\sqrt{5}}{3} by the reciprocal of \frac{2}{9}.
x=\frac{-7\sqrt{5}-17}{\frac{2}{9}\times 3}
Now solve the equation x=\frac{-\frac{17}{3}±\frac{7\sqrt{5}}{3}}{\frac{2}{9}} when ± is minus. Subtract \frac{7\sqrt{5}}{3} from -\frac{17}{3}.
x=\frac{-21\sqrt{5}-51}{2}
Divide \frac{-17-7\sqrt{5}}{3} by \frac{2}{9} by multiplying \frac{-17-7\sqrt{5}}{3} by the reciprocal of \frac{2}{9}.
x=\frac{21\sqrt{5}-51}{2} x=\frac{-21\sqrt{5}-51}{2}
The equation is now solved.
11+\frac{1}{9}x^{2}+\frac{8}{3}x+3x=0
Subtract 5 from 16 to get 11.
11+\frac{1}{9}x^{2}+\frac{17}{3}x=0
Combine \frac{8}{3}x and 3x to get \frac{17}{3}x.
\frac{1}{9}x^{2}+\frac{17}{3}x=-11
Subtract 11 from both sides. Anything subtracted from zero gives its negation.
\frac{\frac{1}{9}x^{2}+\frac{17}{3}x}{\frac{1}{9}}=-\frac{11}{\frac{1}{9}}
Multiply both sides by 9.
x^{2}+\frac{\frac{17}{3}}{\frac{1}{9}}x=-\frac{11}{\frac{1}{9}}
Dividing by \frac{1}{9} undoes the multiplication by \frac{1}{9}.
x^{2}+51x=-\frac{11}{\frac{1}{9}}
Divide \frac{17}{3} by \frac{1}{9} by multiplying \frac{17}{3} by the reciprocal of \frac{1}{9}.
x^{2}+51x=-99
Divide -11 by \frac{1}{9} by multiplying -11 by the reciprocal of \frac{1}{9}.
x^{2}+51x+\left(\frac{51}{2}\right)^{2}=-99+\left(\frac{51}{2}\right)^{2}
Divide 51, the coefficient of the x term, by 2 to get \frac{51}{2}. Then add the square of \frac{51}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+51x+\frac{2601}{4}=-99+\frac{2601}{4}
Square \frac{51}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+51x+\frac{2601}{4}=\frac{2205}{4}
Add -99 to \frac{2601}{4}.
\left(x+\frac{51}{2}\right)^{2}=\frac{2205}{4}
Factor x^{2}+51x+\frac{2601}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{51}{2}\right)^{2}}=\sqrt{\frac{2205}{4}}
Take the square root of both sides of the equation.
x+\frac{51}{2}=\frac{21\sqrt{5}}{2} x+\frac{51}{2}=-\frac{21\sqrt{5}}{2}
Simplify.
x=\frac{21\sqrt{5}-51}{2} x=\frac{-21\sqrt{5}-51}{2}
Subtract \frac{51}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}