Solve for p (complex solution)
\left\{\begin{matrix}p=\frac{v}{z}+45\text{, }&z\neq 0\\p\in \mathrm{C}\text{, }&z=0\text{ and }v=0\end{matrix}\right.
Solve for p
\left\{\begin{matrix}p=\frac{v}{z}+45\text{, }&z\neq 0\\p\in \mathrm{R}\text{, }&z=0\text{ and }v=0\end{matrix}\right.
Solve for v
v=z\left(p-45\right)
Share
Copied to clipboard
45z=pz-v
Combine 16z and 29z to get 45z.
pz-v=45z
Swap sides so that all variable terms are on the left hand side.
pz=45z+v
Add v to both sides.
zp=45z+v
The equation is in standard form.
\frac{zp}{z}=\frac{45z+v}{z}
Divide both sides by z.
p=\frac{45z+v}{z}
Dividing by z undoes the multiplication by z.
p=\frac{v}{z}+45
Divide 45z+v by z.
45z=pz-v
Combine 16z and 29z to get 45z.
pz-v=45z
Swap sides so that all variable terms are on the left hand side.
pz=45z+v
Add v to both sides.
zp=45z+v
The equation is in standard form.
\frac{zp}{z}=\frac{45z+v}{z}
Divide both sides by z.
p=\frac{45z+v}{z}
Dividing by z undoes the multiplication by z.
p=\frac{v}{z}+45
Divide 45z+v by z.
45z=pz-v
Combine 16z and 29z to get 45z.
pz-v=45z
Swap sides so that all variable terms are on the left hand side.
-v=45z-pz
Subtract pz from both sides.
\frac{-v}{-1}=\frac{z\left(45-p\right)}{-1}
Divide both sides by -1.
v=\frac{z\left(45-p\right)}{-1}
Dividing by -1 undoes the multiplication by -1.
v=pz-45z
Divide z\left(45-p\right) by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}