Solve for m (complex solution)
\left\{\begin{matrix}m=\frac{4y\left(9-4y\right)}{5v}\text{, }&v\neq 0\\m\in \mathrm{C}\text{, }&\left(y=0\text{ or }y=\frac{9}{4}\right)\text{ and }v=0\end{matrix}\right.
Solve for v (complex solution)
\left\{\begin{matrix}v=\frac{4y\left(9-4y\right)}{5m}\text{, }&m\neq 0\\v\in \mathrm{C}\text{, }&\left(y=0\text{ or }y=\frac{9}{4}\right)\text{ and }m=0\end{matrix}\right.
Solve for m
\left\{\begin{matrix}m=\frac{4y\left(9-4y\right)}{5v}\text{, }&v\neq 0\\m\in \mathrm{R}\text{, }&\left(y=0\text{ or }y=\frac{9}{4}\right)\text{ and }v=0\end{matrix}\right.
Solve for v
\left\{\begin{matrix}v=\frac{4y\left(9-4y\right)}{5m}\text{, }&m\neq 0\\v\in \mathrm{R}\text{, }&\left(y=0\text{ or }y=\frac{9}{4}\right)\text{ and }m=0\end{matrix}\right.
Graph
Share
Copied to clipboard
32y-16y^{2}+4y-5mv=0
Use the distributive property to multiply 16y by 2-y.
36y-16y^{2}-5mv=0
Combine 32y and 4y to get 36y.
-16y^{2}-5mv=-36y
Subtract 36y from both sides. Anything subtracted from zero gives its negation.
-5mv=-36y+16y^{2}
Add 16y^{2} to both sides.
\left(-5v\right)m=16y^{2}-36y
The equation is in standard form.
\frac{\left(-5v\right)m}{-5v}=\frac{4y\left(4y-9\right)}{-5v}
Divide both sides by -5v.
m=\frac{4y\left(4y-9\right)}{-5v}
Dividing by -5v undoes the multiplication by -5v.
m=-\frac{4y\left(4y-9\right)}{5v}
Divide 4y\left(-9+4y\right) by -5v.
32y-16y^{2}+4y-5mv=0
Use the distributive property to multiply 16y by 2-y.
36y-16y^{2}-5mv=0
Combine 32y and 4y to get 36y.
-16y^{2}-5mv=-36y
Subtract 36y from both sides. Anything subtracted from zero gives its negation.
-5mv=-36y+16y^{2}
Add 16y^{2} to both sides.
\left(-5m\right)v=16y^{2}-36y
The equation is in standard form.
\frac{\left(-5m\right)v}{-5m}=\frac{4y\left(4y-9\right)}{-5m}
Divide both sides by -5m.
v=\frac{4y\left(4y-9\right)}{-5m}
Dividing by -5m undoes the multiplication by -5m.
v=-\frac{4y\left(4y-9\right)}{5m}
Divide 4y\left(-9+4y\right) by -5m.
32y-16y^{2}+4y-5mv=0
Use the distributive property to multiply 16y by 2-y.
36y-16y^{2}-5mv=0
Combine 32y and 4y to get 36y.
-16y^{2}-5mv=-36y
Subtract 36y from both sides. Anything subtracted from zero gives its negation.
-5mv=-36y+16y^{2}
Add 16y^{2} to both sides.
\left(-5v\right)m=16y^{2}-36y
The equation is in standard form.
\frac{\left(-5v\right)m}{-5v}=\frac{4y\left(4y-9\right)}{-5v}
Divide both sides by -5v.
m=\frac{4y\left(4y-9\right)}{-5v}
Dividing by -5v undoes the multiplication by -5v.
m=-\frac{4y\left(4y-9\right)}{5v}
Divide 4y\left(-9+4y\right) by -5v.
32y-16y^{2}+4y-5mv=0
Use the distributive property to multiply 16y by 2-y.
36y-16y^{2}-5mv=0
Combine 32y and 4y to get 36y.
-16y^{2}-5mv=-36y
Subtract 36y from both sides. Anything subtracted from zero gives its negation.
-5mv=-36y+16y^{2}
Add 16y^{2} to both sides.
\left(-5m\right)v=16y^{2}-36y
The equation is in standard form.
\frac{\left(-5m\right)v}{-5m}=\frac{4y\left(4y-9\right)}{-5m}
Divide both sides by -5m.
v=\frac{4y\left(4y-9\right)}{-5m}
Dividing by -5m undoes the multiplication by -5m.
v=-\frac{4y\left(4y-9\right)}{5m}
Divide 4y\left(-9+4y\right) by -5m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}