16 x - 0,4 + 3 ( 2 - x ) = ( 2,5 x + 2 ) \cdot 2
Solve for x
x=-0,2
Graph
Share
Copied to clipboard
16x-0,4+6-3x=\left(2,5x+2\right)\times 2
Use the distributive property to multiply 3 by 2-x.
16x+5,6-3x=\left(2,5x+2\right)\times 2
Add -0,4 and 6 to get 5,6.
13x+5,6=\left(2,5x+2\right)\times 2
Combine 16x and -3x to get 13x.
13x+5,6=5x+4
Use the distributive property to multiply 2,5x+2 by 2.
13x+5,6-5x=4
Subtract 5x from both sides.
8x+5,6=4
Combine 13x and -5x to get 8x.
8x=4-5,6
Subtract 5,6 from both sides.
8x=-1,6
Subtract 5,6 from 4 to get -1,6.
x=\frac{-1,6}{8}
Divide both sides by 8.
x=\frac{-16}{80}
Expand \frac{-1,6}{8} by multiplying both numerator and the denominator by 10.
x=-\frac{1}{5}
Reduce the fraction \frac{-16}{80} to lowest terms by extracting and canceling out 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}