Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(4x^{4}y^{2}-9z^{2}\right)\left(4x^{4}y^{2}+9z^{2}\right)
Rewrite 16x^{8}y^{4}-81z^{4} as \left(4x^{4}y^{2}\right)^{2}-\left(9z^{2}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(4y^{2}x^{4}-9z^{2}\right)\left(4y^{2}x^{4}+9z^{2}\right)
Reorder the terms.
\left(2x^{2}y-3z\right)\left(2x^{2}y+3z\right)
Consider 4y^{2}x^{4}-9z^{2}. Rewrite 4y^{2}x^{4}-9z^{2} as \left(2x^{2}y\right)^{2}-\left(3z\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(2yx^{2}-3z\right)\left(2yx^{2}+3z\right)
Reorder the terms.
\left(2yx^{2}-3z\right)\left(2yx^{2}+3z\right)\left(4y^{2}x^{4}+9z^{2}\right)
Rewrite the complete factored expression.