Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{1296x^{4}-72x^{2}y^{2}+y^{4}}{81}
Factor out \frac{1}{81}.
1296x^{4}-72y^{2}x^{2}+y^{4}
Consider 1296x^{4}-72x^{2}y^{2}+y^{4}. Consider 1296x^{4}-72x^{2}y^{2}+y^{4} as a polynomial over variable x.
\left(36x^{2}-y^{2}\right)\left(36x^{2}-y^{2}\right)
Find one factor of the form kx^{m}+n, where kx^{m} divides the monomial with the highest power 1296x^{4} and n divides the constant factor y^{4}. One such factor is 36x^{2}-y^{2}. Factor the polynomial by dividing it by this factor.
\left(6x-y\right)\left(6x+y\right)
Consider 36x^{2}-y^{2}. Rewrite 36x^{2}-y^{2} as \left(6x\right)^{2}-y^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\frac{\left(6x-y\right)^{2}\left(6x+y\right)^{2}}{81}
Rewrite the complete factored expression.