Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

16t^{2}+56t+77=0
Substitute t for x^{2}.
t=\frac{-56±\sqrt{56^{2}-4\times 16\times 77}}{2\times 16}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 16 for a, 56 for b, and 77 for c in the quadratic formula.
t=\frac{-56±\sqrt{-1792}}{32}
Do the calculations.
t=\frac{\sqrt{7}i}{2}-\frac{7}{4} t=-\frac{\sqrt{7}i}{2}-\frac{7}{4}
Solve the equation t=\frac{-56±\sqrt{-1792}}{32} when ± is plus and when ± is minus.
x=\frac{\sqrt[4]{77}e^{\frac{-\arctan(\frac{2\sqrt{7}}{7})i+3\pi i}{2}}}{2} x=\frac{\sqrt[4]{77}e^{\frac{-\arctan(\frac{2\sqrt{7}}{7})i+\pi i}{2}}}{2} x=\frac{\sqrt[4]{77}e^{\frac{\arctan(\frac{2\sqrt{7}}{7})i+3\pi i}{2}}}{2} x=\frac{\sqrt[4]{77}e^{\frac{\left(\arctan(\frac{2\sqrt{7}}{7})+\pi \right)i}{2}}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.