Solve for x
x=\frac{15\sqrt{10}}{2}+25\approx 48.717082451
x=-\frac{15\sqrt{10}}{2}+25\approx 1.282917549
Graph
Share
Copied to clipboard
16x^{2}-800x+1000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-800\right)±\sqrt{\left(-800\right)^{2}-4\times 16\times 1000}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -800 for b, and 1000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-800\right)±\sqrt{640000-4\times 16\times 1000}}{2\times 16}
Square -800.
x=\frac{-\left(-800\right)±\sqrt{640000-64\times 1000}}{2\times 16}
Multiply -4 times 16.
x=\frac{-\left(-800\right)±\sqrt{640000-64000}}{2\times 16}
Multiply -64 times 1000.
x=\frac{-\left(-800\right)±\sqrt{576000}}{2\times 16}
Add 640000 to -64000.
x=\frac{-\left(-800\right)±240\sqrt{10}}{2\times 16}
Take the square root of 576000.
x=\frac{800±240\sqrt{10}}{2\times 16}
The opposite of -800 is 800.
x=\frac{800±240\sqrt{10}}{32}
Multiply 2 times 16.
x=\frac{240\sqrt{10}+800}{32}
Now solve the equation x=\frac{800±240\sqrt{10}}{32} when ± is plus. Add 800 to 240\sqrt{10}.
x=\frac{15\sqrt{10}}{2}+25
Divide 800+240\sqrt{10} by 32.
x=\frac{800-240\sqrt{10}}{32}
Now solve the equation x=\frac{800±240\sqrt{10}}{32} when ± is minus. Subtract 240\sqrt{10} from 800.
x=-\frac{15\sqrt{10}}{2}+25
Divide 800-240\sqrt{10} by 32.
x=\frac{15\sqrt{10}}{2}+25 x=-\frac{15\sqrt{10}}{2}+25
The equation is now solved.
16x^{2}-800x+1000=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
16x^{2}-800x+1000-1000=-1000
Subtract 1000 from both sides of the equation.
16x^{2}-800x=-1000
Subtracting 1000 from itself leaves 0.
\frac{16x^{2}-800x}{16}=-\frac{1000}{16}
Divide both sides by 16.
x^{2}+\left(-\frac{800}{16}\right)x=-\frac{1000}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}-50x=-\frac{1000}{16}
Divide -800 by 16.
x^{2}-50x=-\frac{125}{2}
Reduce the fraction \frac{-1000}{16} to lowest terms by extracting and canceling out 8.
x^{2}-50x+\left(-25\right)^{2}=-\frac{125}{2}+\left(-25\right)^{2}
Divide -50, the coefficient of the x term, by 2 to get -25. Then add the square of -25 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-50x+625=-\frac{125}{2}+625
Square -25.
x^{2}-50x+625=\frac{1125}{2}
Add -\frac{125}{2} to 625.
\left(x-25\right)^{2}=\frac{1125}{2}
Factor x^{2}-50x+625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-25\right)^{2}}=\sqrt{\frac{1125}{2}}
Take the square root of both sides of the equation.
x-25=\frac{15\sqrt{10}}{2} x-25=-\frac{15\sqrt{10}}{2}
Simplify.
x=\frac{15\sqrt{10}}{2}+25 x=-\frac{15\sqrt{10}}{2}+25
Add 25 to both sides of the equation.
x ^ 2 -50x +\frac{125}{2} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 16
r + s = 50 rs = \frac{125}{2}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 25 - u s = 25 + u
Two numbers r and s sum up to 50 exactly when the average of the two numbers is \frac{1}{2}*50 = 25. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(25 - u) (25 + u) = \frac{125}{2}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{125}{2}
625 - u^2 = \frac{125}{2}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{125}{2}-625 = -\frac{1125}{2}
Simplify the expression by subtracting 625 on both sides
u^2 = \frac{1125}{2} u = \pm\sqrt{\frac{1125}{2}} = \pm \frac{\sqrt{1125}}{\sqrt{2}}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =25 - \frac{\sqrt{1125}}{\sqrt{2}} = 1.283 s = 25 + \frac{\sqrt{1125}}{\sqrt{2}} = 48.717
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}