Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

16x^{2}-64x+64-12x=0
Subtract 12x from both sides.
16x^{2}-76x+64=0
Combine -64x and -12x to get -76x.
x=\frac{-\left(-76\right)±\sqrt{\left(-76\right)^{2}-4\times 16\times 64}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -76 for b, and 64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-76\right)±\sqrt{5776-4\times 16\times 64}}{2\times 16}
Square -76.
x=\frac{-\left(-76\right)±\sqrt{5776-64\times 64}}{2\times 16}
Multiply -4 times 16.
x=\frac{-\left(-76\right)±\sqrt{5776-4096}}{2\times 16}
Multiply -64 times 64.
x=\frac{-\left(-76\right)±\sqrt{1680}}{2\times 16}
Add 5776 to -4096.
x=\frac{-\left(-76\right)±4\sqrt{105}}{2\times 16}
Take the square root of 1680.
x=\frac{76±4\sqrt{105}}{2\times 16}
The opposite of -76 is 76.
x=\frac{76±4\sqrt{105}}{32}
Multiply 2 times 16.
x=\frac{4\sqrt{105}+76}{32}
Now solve the equation x=\frac{76±4\sqrt{105}}{32} when ± is plus. Add 76 to 4\sqrt{105}.
x=\frac{\sqrt{105}+19}{8}
Divide 76+4\sqrt{105} by 32.
x=\frac{76-4\sqrt{105}}{32}
Now solve the equation x=\frac{76±4\sqrt{105}}{32} when ± is minus. Subtract 4\sqrt{105} from 76.
x=\frac{19-\sqrt{105}}{8}
Divide 76-4\sqrt{105} by 32.
x=\frac{\sqrt{105}+19}{8} x=\frac{19-\sqrt{105}}{8}
The equation is now solved.
16x^{2}-64x+64-12x=0
Subtract 12x from both sides.
16x^{2}-76x+64=0
Combine -64x and -12x to get -76x.
16x^{2}-76x=-64
Subtract 64 from both sides. Anything subtracted from zero gives its negation.
\frac{16x^{2}-76x}{16}=-\frac{64}{16}
Divide both sides by 16.
x^{2}+\left(-\frac{76}{16}\right)x=-\frac{64}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}-\frac{19}{4}x=-\frac{64}{16}
Reduce the fraction \frac{-76}{16} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{19}{4}x=-4
Divide -64 by 16.
x^{2}-\frac{19}{4}x+\left(-\frac{19}{8}\right)^{2}=-4+\left(-\frac{19}{8}\right)^{2}
Divide -\frac{19}{4}, the coefficient of the x term, by 2 to get -\frac{19}{8}. Then add the square of -\frac{19}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{19}{4}x+\frac{361}{64}=-4+\frac{361}{64}
Square -\frac{19}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{19}{4}x+\frac{361}{64}=\frac{105}{64}
Add -4 to \frac{361}{64}.
\left(x-\frac{19}{8}\right)^{2}=\frac{105}{64}
Factor x^{2}-\frac{19}{4}x+\frac{361}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{19}{8}\right)^{2}}=\sqrt{\frac{105}{64}}
Take the square root of both sides of the equation.
x-\frac{19}{8}=\frac{\sqrt{105}}{8} x-\frac{19}{8}=-\frac{\sqrt{105}}{8}
Simplify.
x=\frac{\sqrt{105}+19}{8} x=\frac{19-\sqrt{105}}{8}
Add \frac{19}{8} to both sides of the equation.