Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for y (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

16x^{2}-36y^{2}=\left(4x\right)^{2}-\left(6y\right)^{2}
Consider \left(4x+6y\right)\left(4x-6y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
16x^{2}-36y^{2}=4^{2}x^{2}-\left(6y\right)^{2}
Expand \left(4x\right)^{2}.
16x^{2}-36y^{2}=16x^{2}-\left(6y\right)^{2}
Calculate 4 to the power of 2 and get 16.
16x^{2}-36y^{2}=16x^{2}-6^{2}y^{2}
Expand \left(6y\right)^{2}.
16x^{2}-36y^{2}=16x^{2}-36y^{2}
Calculate 6 to the power of 2 and get 36.
16x^{2}-36y^{2}-16x^{2}=-36y^{2}
Subtract 16x^{2} from both sides.
-36y^{2}=-36y^{2}
Combine 16x^{2} and -16x^{2} to get 0.
y^{2}=y^{2}
Cancel out -36 on both sides.
\text{true}
Reorder the terms.
x\in \mathrm{C}
This is true for any x.
16x^{2}-36y^{2}=\left(4x\right)^{2}-\left(6y\right)^{2}
Consider \left(4x+6y\right)\left(4x-6y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
16x^{2}-36y^{2}=4^{2}x^{2}-\left(6y\right)^{2}
Expand \left(4x\right)^{2}.
16x^{2}-36y^{2}=16x^{2}-\left(6y\right)^{2}
Calculate 4 to the power of 2 and get 16.
16x^{2}-36y^{2}=16x^{2}-6^{2}y^{2}
Expand \left(6y\right)^{2}.
16x^{2}-36y^{2}=16x^{2}-36y^{2}
Calculate 6 to the power of 2 and get 36.
16x^{2}-36y^{2}+36y^{2}=16x^{2}
Add 36y^{2} to both sides.
16x^{2}=16x^{2}
Combine -36y^{2} and 36y^{2} to get 0.
x^{2}=x^{2}
Cancel out 16 on both sides.
\text{true}
Reorder the terms.
y\in \mathrm{C}
This is true for any y.
16x^{2}-36y^{2}=\left(4x\right)^{2}-\left(6y\right)^{2}
Consider \left(4x+6y\right)\left(4x-6y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
16x^{2}-36y^{2}=4^{2}x^{2}-\left(6y\right)^{2}
Expand \left(4x\right)^{2}.
16x^{2}-36y^{2}=16x^{2}-\left(6y\right)^{2}
Calculate 4 to the power of 2 and get 16.
16x^{2}-36y^{2}=16x^{2}-6^{2}y^{2}
Expand \left(6y\right)^{2}.
16x^{2}-36y^{2}=16x^{2}-36y^{2}
Calculate 6 to the power of 2 and get 36.
16x^{2}-36y^{2}-16x^{2}=-36y^{2}
Subtract 16x^{2} from both sides.
-36y^{2}=-36y^{2}
Combine 16x^{2} and -16x^{2} to get 0.
y^{2}=y^{2}
Cancel out -36 on both sides.
\text{true}
Reorder the terms.
x\in \mathrm{R}
This is true for any x.
16x^{2}-36y^{2}=\left(4x\right)^{2}-\left(6y\right)^{2}
Consider \left(4x+6y\right)\left(4x-6y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
16x^{2}-36y^{2}=4^{2}x^{2}-\left(6y\right)^{2}
Expand \left(4x\right)^{2}.
16x^{2}-36y^{2}=16x^{2}-\left(6y\right)^{2}
Calculate 4 to the power of 2 and get 16.
16x^{2}-36y^{2}=16x^{2}-6^{2}y^{2}
Expand \left(6y\right)^{2}.
16x^{2}-36y^{2}=16x^{2}-36y^{2}
Calculate 6 to the power of 2 and get 36.
16x^{2}-36y^{2}+36y^{2}=16x^{2}
Add 36y^{2} to both sides.
16x^{2}=16x^{2}
Combine -36y^{2} and 36y^{2} to get 0.
x^{2}=x^{2}
Cancel out 16 on both sides.
\text{true}
Reorder the terms.
y\in \mathrm{R}
This is true for any y.