Solve for x (complex solution)
x\in \mathrm{C}
Solve for y (complex solution)
y\in \mathrm{C}
Solve for x
x\in \mathrm{R}
Solve for y
y\in \mathrm{R}
Graph
Share
Copied to clipboard
16x^{2}-36y^{2}=\left(4x\right)^{2}-\left(6y\right)^{2}
Consider \left(4x+6y\right)\left(4x-6y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
16x^{2}-36y^{2}=4^{2}x^{2}-\left(6y\right)^{2}
Expand \left(4x\right)^{2}.
16x^{2}-36y^{2}=16x^{2}-\left(6y\right)^{2}
Calculate 4 to the power of 2 and get 16.
16x^{2}-36y^{2}=16x^{2}-6^{2}y^{2}
Expand \left(6y\right)^{2}.
16x^{2}-36y^{2}=16x^{2}-36y^{2}
Calculate 6 to the power of 2 and get 36.
16x^{2}-36y^{2}-16x^{2}=-36y^{2}
Subtract 16x^{2} from both sides.
-36y^{2}=-36y^{2}
Combine 16x^{2} and -16x^{2} to get 0.
y^{2}=y^{2}
Cancel out -36 on both sides.
\text{true}
Reorder the terms.
x\in \mathrm{C}
This is true for any x.
16x^{2}-36y^{2}=\left(4x\right)^{2}-\left(6y\right)^{2}
Consider \left(4x+6y\right)\left(4x-6y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
16x^{2}-36y^{2}=4^{2}x^{2}-\left(6y\right)^{2}
Expand \left(4x\right)^{2}.
16x^{2}-36y^{2}=16x^{2}-\left(6y\right)^{2}
Calculate 4 to the power of 2 and get 16.
16x^{2}-36y^{2}=16x^{2}-6^{2}y^{2}
Expand \left(6y\right)^{2}.
16x^{2}-36y^{2}=16x^{2}-36y^{2}
Calculate 6 to the power of 2 and get 36.
16x^{2}-36y^{2}+36y^{2}=16x^{2}
Add 36y^{2} to both sides.
16x^{2}=16x^{2}
Combine -36y^{2} and 36y^{2} to get 0.
x^{2}=x^{2}
Cancel out 16 on both sides.
\text{true}
Reorder the terms.
y\in \mathrm{C}
This is true for any y.
16x^{2}-36y^{2}=\left(4x\right)^{2}-\left(6y\right)^{2}
Consider \left(4x+6y\right)\left(4x-6y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
16x^{2}-36y^{2}=4^{2}x^{2}-\left(6y\right)^{2}
Expand \left(4x\right)^{2}.
16x^{2}-36y^{2}=16x^{2}-\left(6y\right)^{2}
Calculate 4 to the power of 2 and get 16.
16x^{2}-36y^{2}=16x^{2}-6^{2}y^{2}
Expand \left(6y\right)^{2}.
16x^{2}-36y^{2}=16x^{2}-36y^{2}
Calculate 6 to the power of 2 and get 36.
16x^{2}-36y^{2}-16x^{2}=-36y^{2}
Subtract 16x^{2} from both sides.
-36y^{2}=-36y^{2}
Combine 16x^{2} and -16x^{2} to get 0.
y^{2}=y^{2}
Cancel out -36 on both sides.
\text{true}
Reorder the terms.
x\in \mathrm{R}
This is true for any x.
16x^{2}-36y^{2}=\left(4x\right)^{2}-\left(6y\right)^{2}
Consider \left(4x+6y\right)\left(4x-6y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
16x^{2}-36y^{2}=4^{2}x^{2}-\left(6y\right)^{2}
Expand \left(4x\right)^{2}.
16x^{2}-36y^{2}=16x^{2}-\left(6y\right)^{2}
Calculate 4 to the power of 2 and get 16.
16x^{2}-36y^{2}=16x^{2}-6^{2}y^{2}
Expand \left(6y\right)^{2}.
16x^{2}-36y^{2}=16x^{2}-36y^{2}
Calculate 6 to the power of 2 and get 36.
16x^{2}-36y^{2}+36y^{2}=16x^{2}
Add 36y^{2} to both sides.
16x^{2}=16x^{2}
Combine -36y^{2} and 36y^{2} to get 0.
x^{2}=x^{2}
Cancel out 16 on both sides.
\text{true}
Reorder the terms.
y\in \mathrm{R}
This is true for any y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}