Solve for x
x = \frac{\sqrt{10} + 3}{4} \approx 1.540569415
x=\frac{3-\sqrt{10}}{4}\approx -0.040569415
Graph
Share
Copied to clipboard
16x^{2}-24x=1
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
16x^{2}-24x-1=1-1
Subtract 1 from both sides of the equation.
16x^{2}-24x-1=0
Subtracting 1 from itself leaves 0.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 16\left(-1\right)}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -24 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 16\left(-1\right)}}{2\times 16}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-64\left(-1\right)}}{2\times 16}
Multiply -4 times 16.
x=\frac{-\left(-24\right)±\sqrt{576+64}}{2\times 16}
Multiply -64 times -1.
x=\frac{-\left(-24\right)±\sqrt{640}}{2\times 16}
Add 576 to 64.
x=\frac{-\left(-24\right)±8\sqrt{10}}{2\times 16}
Take the square root of 640.
x=\frac{24±8\sqrt{10}}{2\times 16}
The opposite of -24 is 24.
x=\frac{24±8\sqrt{10}}{32}
Multiply 2 times 16.
x=\frac{8\sqrt{10}+24}{32}
Now solve the equation x=\frac{24±8\sqrt{10}}{32} when ± is plus. Add 24 to 8\sqrt{10}.
x=\frac{\sqrt{10}+3}{4}
Divide 24+8\sqrt{10} by 32.
x=\frac{24-8\sqrt{10}}{32}
Now solve the equation x=\frac{24±8\sqrt{10}}{32} when ± is minus. Subtract 8\sqrt{10} from 24.
x=\frac{3-\sqrt{10}}{4}
Divide 24-8\sqrt{10} by 32.
x=\frac{\sqrt{10}+3}{4} x=\frac{3-\sqrt{10}}{4}
The equation is now solved.
16x^{2}-24x=1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{16x^{2}-24x}{16}=\frac{1}{16}
Divide both sides by 16.
x^{2}+\left(-\frac{24}{16}\right)x=\frac{1}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}-\frac{3}{2}x=\frac{1}{16}
Reduce the fraction \frac{-24}{16} to lowest terms by extracting and canceling out 8.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=\frac{1}{16}+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{1+9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{5}{8}
Add \frac{1}{16} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{4}\right)^{2}=\frac{5}{8}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{5}{8}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{\sqrt{10}}{4} x-\frac{3}{4}=-\frac{\sqrt{10}}{4}
Simplify.
x=\frac{\sqrt{10}+3}{4} x=\frac{3-\sqrt{10}}{4}
Add \frac{3}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}