Solve for x
x=\frac{\sqrt{2345}}{4}+7\approx 19.106300013
x=-\frac{\sqrt{2345}}{4}+7\approx -5.106300013
Graph
Share
Copied to clipboard
16x^{2}-224x-1561=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-224\right)±\sqrt{\left(-224\right)^{2}-4\times 16\left(-1561\right)}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -224 for b, and -1561 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-224\right)±\sqrt{50176-4\times 16\left(-1561\right)}}{2\times 16}
Square -224.
x=\frac{-\left(-224\right)±\sqrt{50176-64\left(-1561\right)}}{2\times 16}
Multiply -4 times 16.
x=\frac{-\left(-224\right)±\sqrt{50176+99904}}{2\times 16}
Multiply -64 times -1561.
x=\frac{-\left(-224\right)±\sqrt{150080}}{2\times 16}
Add 50176 to 99904.
x=\frac{-\left(-224\right)±8\sqrt{2345}}{2\times 16}
Take the square root of 150080.
x=\frac{224±8\sqrt{2345}}{2\times 16}
The opposite of -224 is 224.
x=\frac{224±8\sqrt{2345}}{32}
Multiply 2 times 16.
x=\frac{8\sqrt{2345}+224}{32}
Now solve the equation x=\frac{224±8\sqrt{2345}}{32} when ± is plus. Add 224 to 8\sqrt{2345}.
x=\frac{\sqrt{2345}}{4}+7
Divide 224+8\sqrt{2345} by 32.
x=\frac{224-8\sqrt{2345}}{32}
Now solve the equation x=\frac{224±8\sqrt{2345}}{32} when ± is minus. Subtract 8\sqrt{2345} from 224.
x=-\frac{\sqrt{2345}}{4}+7
Divide 224-8\sqrt{2345} by 32.
x=\frac{\sqrt{2345}}{4}+7 x=-\frac{\sqrt{2345}}{4}+7
The equation is now solved.
16x^{2}-224x-1561=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
16x^{2}-224x-1561-\left(-1561\right)=-\left(-1561\right)
Add 1561 to both sides of the equation.
16x^{2}-224x=-\left(-1561\right)
Subtracting -1561 from itself leaves 0.
16x^{2}-224x=1561
Subtract -1561 from 0.
\frac{16x^{2}-224x}{16}=\frac{1561}{16}
Divide both sides by 16.
x^{2}+\left(-\frac{224}{16}\right)x=\frac{1561}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}-14x=\frac{1561}{16}
Divide -224 by 16.
x^{2}-14x+\left(-7\right)^{2}=\frac{1561}{16}+\left(-7\right)^{2}
Divide -14, the coefficient of the x term, by 2 to get -7. Then add the square of -7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-14x+49=\frac{1561}{16}+49
Square -7.
x^{2}-14x+49=\frac{2345}{16}
Add \frac{1561}{16} to 49.
\left(x-7\right)^{2}=\frac{2345}{16}
Factor x^{2}-14x+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-7\right)^{2}}=\sqrt{\frac{2345}{16}}
Take the square root of both sides of the equation.
x-7=\frac{\sqrt{2345}}{4} x-7=-\frac{\sqrt{2345}}{4}
Simplify.
x=\frac{\sqrt{2345}}{4}+7 x=-\frac{\sqrt{2345}}{4}+7
Add 7 to both sides of the equation.
x ^ 2 -14x -\frac{1561}{16} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 16
r + s = 14 rs = -\frac{1561}{16}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 7 - u s = 7 + u
Two numbers r and s sum up to 14 exactly when the average of the two numbers is \frac{1}{2}*14 = 7. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(7 - u) (7 + u) = -\frac{1561}{16}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{1561}{16}
49 - u^2 = -\frac{1561}{16}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{1561}{16}-49 = -\frac{2345}{16}
Simplify the expression by subtracting 49 on both sides
u^2 = \frac{2345}{16} u = \pm\sqrt{\frac{2345}{16}} = \pm \frac{\sqrt{2345}}{4}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =7 - \frac{\sqrt{2345}}{4} = -5.106 s = 7 + \frac{\sqrt{2345}}{4} = 19.106
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}