Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

16x^{2}-56x=-51
Subtract 56x from both sides.
16x^{2}-56x+51=0
Add 51 to both sides.
x=\frac{-\left(-56\right)±\sqrt{\left(-56\right)^{2}-4\times 16\times 51}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -56 for b, and 51 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-56\right)±\sqrt{3136-4\times 16\times 51}}{2\times 16}
Square -56.
x=\frac{-\left(-56\right)±\sqrt{3136-64\times 51}}{2\times 16}
Multiply -4 times 16.
x=\frac{-\left(-56\right)±\sqrt{3136-3264}}{2\times 16}
Multiply -64 times 51.
x=\frac{-\left(-56\right)±\sqrt{-128}}{2\times 16}
Add 3136 to -3264.
x=\frac{-\left(-56\right)±8\sqrt{2}i}{2\times 16}
Take the square root of -128.
x=\frac{56±8\sqrt{2}i}{2\times 16}
The opposite of -56 is 56.
x=\frac{56±8\sqrt{2}i}{32}
Multiply 2 times 16.
x=\frac{56+2^{\frac{7}{2}}i}{32}
Now solve the equation x=\frac{56±8\sqrt{2}i}{32} when ± is plus. Add 56 to 8i\sqrt{2}.
x=\frac{7+\sqrt{2}i}{4}
Divide 56+i\times 2^{\frac{7}{2}} by 32.
x=\frac{-2^{\frac{7}{2}}i+56}{32}
Now solve the equation x=\frac{56±8\sqrt{2}i}{32} when ± is minus. Subtract 8i\sqrt{2} from 56.
x=\frac{-\sqrt{2}i+7}{4}
Divide 56-i\times 2^{\frac{7}{2}} by 32.
x=\frac{7+\sqrt{2}i}{4} x=\frac{-\sqrt{2}i+7}{4}
The equation is now solved.
16x^{2}-56x=-51
Subtract 56x from both sides.
\frac{16x^{2}-56x}{16}=-\frac{51}{16}
Divide both sides by 16.
x^{2}+\left(-\frac{56}{16}\right)x=-\frac{51}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}-\frac{7}{2}x=-\frac{51}{16}
Reduce the fraction \frac{-56}{16} to lowest terms by extracting and canceling out 8.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=-\frac{51}{16}+\left(-\frac{7}{4}\right)^{2}
Divide -\frac{7}{2}, the coefficient of the x term, by 2 to get -\frac{7}{4}. Then add the square of -\frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{-51+49}{16}
Square -\frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{2}x+\frac{49}{16}=-\frac{1}{8}
Add -\frac{51}{16} to \frac{49}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{4}\right)^{2}=-\frac{1}{8}
Factor x^{2}-\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{-\frac{1}{8}}
Take the square root of both sides of the equation.
x-\frac{7}{4}=\frac{\sqrt{2}i}{4} x-\frac{7}{4}=-\frac{\sqrt{2}i}{4}
Simplify.
x=\frac{7+\sqrt{2}i}{4} x=\frac{-\sqrt{2}i+7}{4}
Add \frac{7}{4} to both sides of the equation.