Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=34 ab=16\left(-15\right)=-240
Factor the expression by grouping. First, the expression needs to be rewritten as 16x^{2}+ax+bx-15. To find a and b, set up a system to be solved.
-1,240 -2,120 -3,80 -4,60 -5,48 -6,40 -8,30 -10,24 -12,20 -15,16
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -240.
-1+240=239 -2+120=118 -3+80=77 -4+60=56 -5+48=43 -6+40=34 -8+30=22 -10+24=14 -12+20=8 -15+16=1
Calculate the sum for each pair.
a=-6 b=40
The solution is the pair that gives sum 34.
\left(16x^{2}-6x\right)+\left(40x-15\right)
Rewrite 16x^{2}+34x-15 as \left(16x^{2}-6x\right)+\left(40x-15\right).
2x\left(8x-3\right)+5\left(8x-3\right)
Factor out 2x in the first and 5 in the second group.
\left(8x-3\right)\left(2x+5\right)
Factor out common term 8x-3 by using distributive property.
16x^{2}+34x-15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-34±\sqrt{34^{2}-4\times 16\left(-15\right)}}{2\times 16}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-34±\sqrt{1156-4\times 16\left(-15\right)}}{2\times 16}
Square 34.
x=\frac{-34±\sqrt{1156-64\left(-15\right)}}{2\times 16}
Multiply -4 times 16.
x=\frac{-34±\sqrt{1156+960}}{2\times 16}
Multiply -64 times -15.
x=\frac{-34±\sqrt{2116}}{2\times 16}
Add 1156 to 960.
x=\frac{-34±46}{2\times 16}
Take the square root of 2116.
x=\frac{-34±46}{32}
Multiply 2 times 16.
x=\frac{12}{32}
Now solve the equation x=\frac{-34±46}{32} when ± is plus. Add -34 to 46.
x=\frac{3}{8}
Reduce the fraction \frac{12}{32} to lowest terms by extracting and canceling out 4.
x=-\frac{80}{32}
Now solve the equation x=\frac{-34±46}{32} when ± is minus. Subtract 46 from -34.
x=-\frac{5}{2}
Reduce the fraction \frac{-80}{32} to lowest terms by extracting and canceling out 16.
16x^{2}+34x-15=16\left(x-\frac{3}{8}\right)\left(x-\left(-\frac{5}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3}{8} for x_{1} and -\frac{5}{2} for x_{2}.
16x^{2}+34x-15=16\left(x-\frac{3}{8}\right)\left(x+\frac{5}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
16x^{2}+34x-15=16\times \frac{8x-3}{8}\left(x+\frac{5}{2}\right)
Subtract \frac{3}{8} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
16x^{2}+34x-15=16\times \frac{8x-3}{8}\times \frac{2x+5}{2}
Add \frac{5}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
16x^{2}+34x-15=16\times \frac{\left(8x-3\right)\left(2x+5\right)}{8\times 2}
Multiply \frac{8x-3}{8} times \frac{2x+5}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
16x^{2}+34x-15=16\times \frac{\left(8x-3\right)\left(2x+5\right)}{16}
Multiply 8 times 2.
16x^{2}+34x-15=\left(8x-3\right)\left(2x+5\right)
Cancel out 16, the greatest common factor in 16 and 16.
x ^ 2 +\frac{17}{8}x -\frac{15}{16} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 16
r + s = -\frac{17}{8} rs = -\frac{15}{16}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{17}{16} - u s = -\frac{17}{16} + u
Two numbers r and s sum up to -\frac{17}{8} exactly when the average of the two numbers is \frac{1}{2}*-\frac{17}{8} = -\frac{17}{16}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{17}{16} - u) (-\frac{17}{16} + u) = -\frac{15}{16}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{15}{16}
\frac{289}{256} - u^2 = -\frac{15}{16}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{15}{16}-\frac{289}{256} = -\frac{529}{256}
Simplify the expression by subtracting \frac{289}{256} on both sides
u^2 = \frac{529}{256} u = \pm\sqrt{\frac{529}{256}} = \pm \frac{23}{16}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{17}{16} - \frac{23}{16} = -2.500 s = -\frac{17}{16} + \frac{23}{16} = 0.375
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.