Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\left(4x^{2}+3x\right)
Factor out 4.
x\left(4x+3\right)
Consider 4x^{2}+3x. Factor out x.
4x\left(4x+3\right)
Rewrite the complete factored expression.
16x^{2}+12x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}}}{2\times 16}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±12}{2\times 16}
Take the square root of 12^{2}.
x=\frac{-12±12}{32}
Multiply 2 times 16.
x=\frac{0}{32}
Now solve the equation x=\frac{-12±12}{32} when ± is plus. Add -12 to 12.
x=0
Divide 0 by 32.
x=-\frac{24}{32}
Now solve the equation x=\frac{-12±12}{32} when ± is minus. Subtract 12 from -12.
x=-\frac{3}{4}
Reduce the fraction \frac{-24}{32} to lowest terms by extracting and canceling out 8.
16x^{2}+12x=16x\left(x-\left(-\frac{3}{4}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{3}{4} for x_{2}.
16x^{2}+12x=16x\left(x+\frac{3}{4}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
16x^{2}+12x=16x\times \frac{4x+3}{4}
Add \frac{3}{4} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
16x^{2}+12x=4x\left(4x+3\right)
Cancel out 4, the greatest common factor in 16 and 4.