Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

26x^{2}=24
Combine 16x^{2} and 10x^{2} to get 26x^{2}.
x^{2}=\frac{24}{26}
Divide both sides by 26.
x^{2}=\frac{12}{13}
Reduce the fraction \frac{24}{26} to lowest terms by extracting and canceling out 2.
x=\frac{2\sqrt{39}}{13} x=-\frac{2\sqrt{39}}{13}
Take the square root of both sides of the equation.
26x^{2}=24
Combine 16x^{2} and 10x^{2} to get 26x^{2}.
26x^{2}-24=0
Subtract 24 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 26\left(-24\right)}}{2\times 26}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 26 for a, 0 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 26\left(-24\right)}}{2\times 26}
Square 0.
x=\frac{0±\sqrt{-104\left(-24\right)}}{2\times 26}
Multiply -4 times 26.
x=\frac{0±\sqrt{2496}}{2\times 26}
Multiply -104 times -24.
x=\frac{0±8\sqrt{39}}{2\times 26}
Take the square root of 2496.
x=\frac{0±8\sqrt{39}}{52}
Multiply 2 times 26.
x=\frac{2\sqrt{39}}{13}
Now solve the equation x=\frac{0±8\sqrt{39}}{52} when ± is plus.
x=-\frac{2\sqrt{39}}{13}
Now solve the equation x=\frac{0±8\sqrt{39}}{52} when ± is minus.
x=\frac{2\sqrt{39}}{13} x=-\frac{2\sqrt{39}}{13}
The equation is now solved.