Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

16x^{2}+1-5x=0
Subtract 5x from both sides.
16x^{2}-5x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 16}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -5 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 16}}{2\times 16}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-64}}{2\times 16}
Multiply -4 times 16.
x=\frac{-\left(-5\right)±\sqrt{-39}}{2\times 16}
Add 25 to -64.
x=\frac{-\left(-5\right)±\sqrt{39}i}{2\times 16}
Take the square root of -39.
x=\frac{5±\sqrt{39}i}{2\times 16}
The opposite of -5 is 5.
x=\frac{5±\sqrt{39}i}{32}
Multiply 2 times 16.
x=\frac{5+\sqrt{39}i}{32}
Now solve the equation x=\frac{5±\sqrt{39}i}{32} when ± is plus. Add 5 to i\sqrt{39}.
x=\frac{-\sqrt{39}i+5}{32}
Now solve the equation x=\frac{5±\sqrt{39}i}{32} when ± is minus. Subtract i\sqrt{39} from 5.
x=\frac{5+\sqrt{39}i}{32} x=\frac{-\sqrt{39}i+5}{32}
The equation is now solved.
16x^{2}+1-5x=0
Subtract 5x from both sides.
16x^{2}-5x=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\frac{16x^{2}-5x}{16}=-\frac{1}{16}
Divide both sides by 16.
x^{2}-\frac{5}{16}x=-\frac{1}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}-\frac{5}{16}x+\left(-\frac{5}{32}\right)^{2}=-\frac{1}{16}+\left(-\frac{5}{32}\right)^{2}
Divide -\frac{5}{16}, the coefficient of the x term, by 2 to get -\frac{5}{32}. Then add the square of -\frac{5}{32} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{16}x+\frac{25}{1024}=-\frac{1}{16}+\frac{25}{1024}
Square -\frac{5}{32} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{16}x+\frac{25}{1024}=-\frac{39}{1024}
Add -\frac{1}{16} to \frac{25}{1024} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{32}\right)^{2}=-\frac{39}{1024}
Factor x^{2}-\frac{5}{16}x+\frac{25}{1024}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{32}\right)^{2}}=\sqrt{-\frac{39}{1024}}
Take the square root of both sides of the equation.
x-\frac{5}{32}=\frac{\sqrt{39}i}{32} x-\frac{5}{32}=-\frac{\sqrt{39}i}{32}
Simplify.
x=\frac{5+\sqrt{39}i}{32} x=\frac{-\sqrt{39}i+5}{32}
Add \frac{5}{32} to both sides of the equation.