Solve for k
k=-\frac{16x^{2}+x-1}{2x+1}
x\neq -\frac{1}{2}
Solve for x (complex solution)
x=\frac{\sqrt{4k^{2}-60k+65}}{32}-\frac{k}{16}-\frac{1}{32}
x=-\frac{\sqrt{4k^{2}-60k+65}}{32}-\frac{k}{16}-\frac{1}{32}
Solve for x
x=\frac{\sqrt{4k^{2}-60k+65}}{32}-\frac{k}{16}-\frac{1}{32}
x=-\frac{\sqrt{4k^{2}-60k+65}}{32}-\frac{k}{16}-\frac{1}{32}\text{, }k\geq 2\sqrt{10}+\frac{15}{2}\text{ or }k\leq \frac{15}{2}-2\sqrt{10}
Graph
Share
Copied to clipboard
16x^{2}+2kx+x+k-1=0
Use the distributive property to multiply 2k+1 by x.
2kx+x+k-1=-16x^{2}
Subtract 16x^{2} from both sides. Anything subtracted from zero gives its negation.
2kx+k-1=-16x^{2}-x
Subtract x from both sides.
2kx+k=-16x^{2}-x+1
Add 1 to both sides.
\left(2x+1\right)k=-16x^{2}-x+1
Combine all terms containing k.
\left(2x+1\right)k=1-x-16x^{2}
The equation is in standard form.
\frac{\left(2x+1\right)k}{2x+1}=\frac{1-x-16x^{2}}{2x+1}
Divide both sides by 2x+1.
k=\frac{1-x-16x^{2}}{2x+1}
Dividing by 2x+1 undoes the multiplication by 2x+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}