Factor
\left(2-5v\right)\left(3v-2\right)
Evaluate
\left(2-5v\right)\left(3v-2\right)
Share
Copied to clipboard
-15v^{2}+16v-4
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=16 ab=-15\left(-4\right)=60
Factor the expression by grouping. First, the expression needs to be rewritten as -15v^{2}+av+bv-4. To find a and b, set up a system to be solved.
1,60 2,30 3,20 4,15 5,12 6,10
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 60.
1+60=61 2+30=32 3+20=23 4+15=19 5+12=17 6+10=16
Calculate the sum for each pair.
a=10 b=6
The solution is the pair that gives sum 16.
\left(-15v^{2}+10v\right)+\left(6v-4\right)
Rewrite -15v^{2}+16v-4 as \left(-15v^{2}+10v\right)+\left(6v-4\right).
-5v\left(3v-2\right)+2\left(3v-2\right)
Factor out -5v in the first and 2 in the second group.
\left(3v-2\right)\left(-5v+2\right)
Factor out common term 3v-2 by using distributive property.
-15v^{2}+16v-4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
v=\frac{-16±\sqrt{16^{2}-4\left(-15\right)\left(-4\right)}}{2\left(-15\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
v=\frac{-16±\sqrt{256-4\left(-15\right)\left(-4\right)}}{2\left(-15\right)}
Square 16.
v=\frac{-16±\sqrt{256+60\left(-4\right)}}{2\left(-15\right)}
Multiply -4 times -15.
v=\frac{-16±\sqrt{256-240}}{2\left(-15\right)}
Multiply 60 times -4.
v=\frac{-16±\sqrt{16}}{2\left(-15\right)}
Add 256 to -240.
v=\frac{-16±4}{2\left(-15\right)}
Take the square root of 16.
v=\frac{-16±4}{-30}
Multiply 2 times -15.
v=-\frac{12}{-30}
Now solve the equation v=\frac{-16±4}{-30} when ± is plus. Add -16 to 4.
v=\frac{2}{5}
Reduce the fraction \frac{-12}{-30} to lowest terms by extracting and canceling out 6.
v=-\frac{20}{-30}
Now solve the equation v=\frac{-16±4}{-30} when ± is minus. Subtract 4 from -16.
v=\frac{2}{3}
Reduce the fraction \frac{-20}{-30} to lowest terms by extracting and canceling out 10.
-15v^{2}+16v-4=-15\left(v-\frac{2}{5}\right)\left(v-\frac{2}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{2}{5} for x_{1} and \frac{2}{3} for x_{2}.
-15v^{2}+16v-4=-15\times \frac{-5v+2}{-5}\left(v-\frac{2}{3}\right)
Subtract \frac{2}{5} from v by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-15v^{2}+16v-4=-15\times \frac{-5v+2}{-5}\times \frac{-3v+2}{-3}
Subtract \frac{2}{3} from v by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-15v^{2}+16v-4=-15\times \frac{\left(-5v+2\right)\left(-3v+2\right)}{-5\left(-3\right)}
Multiply \frac{-5v+2}{-5} times \frac{-3v+2}{-3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
-15v^{2}+16v-4=-15\times \frac{\left(-5v+2\right)\left(-3v+2\right)}{15}
Multiply -5 times -3.
-15v^{2}+16v-4=-\left(-5v+2\right)\left(-3v+2\right)
Cancel out 15, the greatest common factor in -15 and 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}