Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

16t^{2}+9t-162=0
Multiply 18 and 9 to get 162.
t=\frac{-9±\sqrt{9^{2}-4\times 16\left(-162\right)}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, 9 for b, and -162 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-9±\sqrt{81-4\times 16\left(-162\right)}}{2\times 16}
Square 9.
t=\frac{-9±\sqrt{81-64\left(-162\right)}}{2\times 16}
Multiply -4 times 16.
t=\frac{-9±\sqrt{81+10368}}{2\times 16}
Multiply -64 times -162.
t=\frac{-9±\sqrt{10449}}{2\times 16}
Add 81 to 10368.
t=\frac{-9±9\sqrt{129}}{2\times 16}
Take the square root of 10449.
t=\frac{-9±9\sqrt{129}}{32}
Multiply 2 times 16.
t=\frac{9\sqrt{129}-9}{32}
Now solve the equation t=\frac{-9±9\sqrt{129}}{32} when ± is plus. Add -9 to 9\sqrt{129}.
t=\frac{-9\sqrt{129}-9}{32}
Now solve the equation t=\frac{-9±9\sqrt{129}}{32} when ± is minus. Subtract 9\sqrt{129} from -9.
t=\frac{9\sqrt{129}-9}{32} t=\frac{-9\sqrt{129}-9}{32}
The equation is now solved.
16t^{2}+9t-162=0
Multiply 18 and 9 to get 162.
16t^{2}+9t=162
Add 162 to both sides. Anything plus zero gives itself.
\frac{16t^{2}+9t}{16}=\frac{162}{16}
Divide both sides by 16.
t^{2}+\frac{9}{16}t=\frac{162}{16}
Dividing by 16 undoes the multiplication by 16.
t^{2}+\frac{9}{16}t=\frac{81}{8}
Reduce the fraction \frac{162}{16} to lowest terms by extracting and canceling out 2.
t^{2}+\frac{9}{16}t+\left(\frac{9}{32}\right)^{2}=\frac{81}{8}+\left(\frac{9}{32}\right)^{2}
Divide \frac{9}{16}, the coefficient of the x term, by 2 to get \frac{9}{32}. Then add the square of \frac{9}{32} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{9}{16}t+\frac{81}{1024}=\frac{81}{8}+\frac{81}{1024}
Square \frac{9}{32} by squaring both the numerator and the denominator of the fraction.
t^{2}+\frac{9}{16}t+\frac{81}{1024}=\frac{10449}{1024}
Add \frac{81}{8} to \frac{81}{1024} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t+\frac{9}{32}\right)^{2}=\frac{10449}{1024}
Factor t^{2}+\frac{9}{16}t+\frac{81}{1024}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{9}{32}\right)^{2}}=\sqrt{\frac{10449}{1024}}
Take the square root of both sides of the equation.
t+\frac{9}{32}=\frac{9\sqrt{129}}{32} t+\frac{9}{32}=-\frac{9\sqrt{129}}{32}
Simplify.
t=\frac{9\sqrt{129}-9}{32} t=\frac{-9\sqrt{129}-9}{32}
Subtract \frac{9}{32} from both sides of the equation.