Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

t^{2}+16t+14=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-16±\sqrt{16^{2}-4\times 14}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-16±\sqrt{256-4\times 14}}{2}
Square 16.
t=\frac{-16±\sqrt{256-56}}{2}
Multiply -4 times 14.
t=\frac{-16±\sqrt{200}}{2}
Add 256 to -56.
t=\frac{-16±10\sqrt{2}}{2}
Take the square root of 200.
t=\frac{10\sqrt{2}-16}{2}
Now solve the equation t=\frac{-16±10\sqrt{2}}{2} when ± is plus. Add -16 to 10\sqrt{2}.
t=5\sqrt{2}-8
Divide -16+10\sqrt{2} by 2.
t=\frac{-10\sqrt{2}-16}{2}
Now solve the equation t=\frac{-16±10\sqrt{2}}{2} when ± is minus. Subtract 10\sqrt{2} from -16.
t=-5\sqrt{2}-8
Divide -16-10\sqrt{2} by 2.
t^{2}+16t+14=\left(t-\left(5\sqrt{2}-8\right)\right)\left(t-\left(-5\sqrt{2}-8\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -8+5\sqrt{2} for x_{1} and -8-5\sqrt{2} for x_{2}.